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Abstract

Background Pulmonary nodule with diameters ranging 8-30 mm has a high occurrence rate, and distinguishing
benign from malignant nodules can greatly improve the patient outcome of lung cancer. However, sensitive and
specific liquid-biopsy methods have yet to achieve satisfactory clinical goals.

Methods We enrolled three cohorts and a total of 185 patients diagnosed with benign (BE) and malignant (MA)
pulmonary nodules. Utilizing data-independent acquisition (DIA) mass spectrometry, we quantified plasma proteome
from these patients. We then performed logistic regression analysis to classify benign from malignant nodules, using
cohort 1 as discovery data set and cohort 2 and 3 as independent validation data sets. We also developed a targeted
multi-reaction monitoring (MRM) method to measure the concentration of the selected six peptide markers in plasma
samples.

Results We quantified a total of 451 plasma proteins, with 15 up-regulated and 5 down-regulated proteins from
patients diagnosed as having malignant nodules. Logistic regression identified a six-protein panel comprised

of APOA4, CD14, PEN1, APOB, PLA2G7, and IGFBP2 that classifies benign and malignant nodules with improved
accuracy. In cohort 1, the area under curve (AUC) of the training and testing reached 0.87 and 0.91, respectively. We
achieved a sensitivity of 100%, specificity of 40%, positive predictive value (PPV) of 62.5%, and negative predictive
value (NPV) of 100%. In two independent cohorts, the 6-biomarker panel showed a sensitivity, specificity, PPV, and
NPV of 96.2%, 35%, 65.8%, and 87.5% respectively in cohort 2, and 91.4%, 54.2%, 74.4%, and 81.3% respectively in
cohort 3. We performed a targeted LC-MS/MS method to quantify plasma concentration of the six peptides and
applied logistic regression to classify benign and malignant nodules with AUC of the training and testing reached
0.758 and 0.751, respectively.

Conclusions Our study identified a panel of plasma protein biomarkers for distinguishing benign from malignant
pulmonary nodules that worth further development into a clinically valuable assay.
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Background

Each year around 1.6 million people in the United States
are diagnosed with pulmonary nodule [1], whereas
several population-based studies estimated nodule
occurrence rate between 3 and 13% (Oudkerk, Liu, Heu-
velmans, Walter, & Field [2]), imposing serious health
care issues to the society. The initial diagnosis of pulmo-
nary nodule is usually made from low-dose computed
tomography (LDCT), in which the probability of malig-
nancy reaches 10-80% in nodules with a size greater than
10 mm, whereas nearly 99% of nodules are benign with
a size less than 6 mm [1]. Nodules with the size between
5~30 mm presents a dilemma to clinicians, because the
estimated probability of cancer between 5~65% [3] is
too wide a range to be actionable: surgical procedures
may result in over treatment leading to various complica-
tions, whereas nodules left untreated may bear the risk
of malignancy and tumor progression. Thus, developing
sensitive diagnostic methods to differentiate benign from
malignant nodules is critically important.

Currently, non-invasive diagnostic methods such as
liquid biopsy detect tumor-derived nucleic acids or dif-
ferentially expressed proteins in the blood or other
body fluids. Circulating tumor cells provide a plethora
of tumor-derived nucleic acid species for detection,
including circulating tumor DNA (ctDNA) [4], cell-free
DNA (cfDNA) [5], as well as circulating messenger RNA
(mRNA) and long non-coding RNA (IncRNA) [6]. Detec-
tion of nucleic acids derived from circulating tumor cells
possess the intrinsic property of specificity for detect-
ing cancer, therefore greatly reduces the false positive
rates. Aided by newer generation sequencing methods,
it also maintains a high sensitivity, especially applicable
in bronchoalveolar fluids [7]. In addition, methylation of
panels of tumor suppressor genes and/or oncogenes also
produced satisfactory sensitivity and specificity in dis-
tinguishing between lung cancer and benign pulmonary
nodules, and has the potential of clinical utility [8, 9].
Other blood-derived inflammation parameters including
neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte
ratio, and systemic immune-inflammation index have
been assessed to associate with malignant pulmonary
nodules with mild odds ratios [10].

In contrast to the wide range of biomarker studies uti-
lizing nucleic acid as targets, studies on protein biomark-
ers are relatively scarce. Notably, Pulmonary Nodule
Plasma Proteomic Classifier (PANOPTIC) presented an
integrated protein biomarker incorporating several key
clinical features to distinguish benign from malignant
nodules [11-13], it is by far the only mass spectrometry-
based assay that has been used in clinic to manage nodule
patients. A two-year follow-up study shows that with a
sensitivity of 97%, specificity of 44%, and negative predic-
tive value of 98%, this biomarker performs superior than
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physician estimates of probability of cancer [14]. Never-
theless, this biomarker panel still suffers from low speci-
ficity and thus relatively poor positive predictive value,
therefore further development on protein biomarker
panel remains warranted.

In this study, we applied quantitative mass spectrom-
etry technology to retrospectively compare the plasma
proteome between patients diagnosed with benign and
malignant pulmonary nodules. The nature of the nodule
was pathologically confirmed through fine-needle aspi-
ration. We captured unique molecular features of the
plasma proteome from patients with malignant nodule.
Using these features, we applied logistic regression to dis-
cover a panel of protein biomarkers that perform well in
distinguish benign from malignant pulmonary nodules.

Methods

Human samples

The study started in June 30th, 2020 and ended in August
31st, 2022. Peripheral venous blood samples were col-
lected before surgery. The patient recruitment criteria
included: the overall groups of benign and malignant
samples were matched in gender, nodule size and age.
Using a population based non-small-cell lung cancer
prevalence estimate, patients whose nodule size lies
between 3 mm and 30 mm were included. Patients with
a history of other cancers were excluded. The study was
approved by the hospital’s institutional review com-
mittee. The participants provided the written informed
consent. T test and chi-squared test were applied to the
clinical information and to ensure that there was no sta-
tistical significance in clinical factors between the two
patient groups. The study conformed to the Declara-
tion of Helsinki and was approved by the Medical Ethics
Committee of The First Affiliated Hospital of Zhengzhou
University (Study license number 2020-KY-308) and
Chongqing University Cancer Hospital (Study license
number CZLS2023268-A).

In the discovery cohort (cohort 1), plasma samples
from 40 patients diagnosed with benign and 40 patients
diagnosed with malignant pulmonary nodules were col-
lected from First Affiliated Hospital of Zhengzhou Uni-
versity. In two independent validation cohorts - cohort
2 (20 benign, 26 malignant) and cohort 3 (24 benign, 35
malignant), the plasma samples were collected from The
First Affiliated Hospital of Zhengzhou University and
Chongqing University Cancer Hospital, respectively.
We calculated the effect size of the six protein markers
using the normalized intensity results, taken into con-
sideration the fold changes and pooled standard devia-
tion of both benign and malignant groups. The Cohen’s
d ranges from small effect size of 0.213 to large effect size
of 0.921 among the six peptides. By calculating the theo-
retical effect size given existing sample size of 40 in each
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group, a of 0.05 and a power of 0.8, resulting the effect
size d=0.634, at least two protein markers reached this
desired effect size in the discovery cohort.

Processing of plasma samples

For DIA proteome discovery assay, the plasma samples
were depleted of top 14 high-abundant proteins (Cat.
#A36370, Thermo Science, USA), and BCA kit was used
to determine the protein concentration in plasma sam-
ples. From each sample, 25 pg proteins were suspended
in NH,HCO; solution with a final concentration of 50
mM. The proteins were reacted with 10 mM DTT at
95 °C for 10 min and alkylated with 15 mM iodoacet-
amide (Cat. # 11149, Sigma Aldrich, USA) in darkness
for 30 min and digested with sequencing grade trypsin
(1:50; Cat. # V5113, Promega, USA) overnight at 37 °C.
The resulting peptides were desalted with 96-well SOLA
solid-phase extraction apparatus, and vacuum dried for
mass spectrometry analysis.

For the MRM experiments, 8 uL plasma samples were
also depleted of top 14 high-abundant proteins. For each
sample, 20 pg proteins were subsequently processed
the same way as described in DIA experiments. The six
internal standards using synthetic stable isotope-labeled
peptides were spiked in the proteotypic peptides or the
standard curve samples at a final concentration of 25 ng/
mL for each peptide for absolute quantification (Synpep-
tide, China). The resulting peptides were desalted with
96-well SOLA solid-phase extraction apparatus, and
vacuum dried. The resulting peptides were resuspended
in 80 puL 0.1% FA, and 15 pL were injected for mass spec-
trometry analysis.

Data-independent acquisition mass spectrometry (DIA-MS)
of plasma samples

Protein digests were analyzed using an EASY-nLC 1200
LC coupled with Q-Exactive Explories 240 mass spec-
trometer (ThermoScientific, USA). To assess the stabil-
ity of the analytical system, a QC sample composed of a
small aliquot of each sample was interspersed in every
five samples. In addition, the sequence of the sample run
was completely randomized. For the LC separation, the
mobile phases consisted of buffer A (100% ddH20, 0.1%
formic acid) and buffer B (80% ACN, 0.1% formic acid).
Peptides were resuspended in buffer A and spiked with
iRT peptides (Omicsolution, China). An equivalent to 1.5
ug of protein digest from each sample was loaded onto a
C18 column (Cat. #164941, Thermo Science, USA) con-
nected with a pre-column (Cat. #164535, Thermo Scien-
tific, USA) and separated at a flow rate of 300 nL./ min. A
90 min gradient from 1 to 8% buffer B in 1 min, 8-28% in
71 min, 28-40% in 9 min, 40-100% in 2 min, and 100%
for 7 min was used.
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The MS instrument was operated in the positive mode
and centroid mode with a nano-electrospray through
a heated ion transfer tube with a temperature setting of
320 °C. For data dependent acquisition (DDA), one full
scan MS from 350 to 1500 m/z followed by 20 MS2 scans
were continuously acquired. MS spectra were acquired
with resolution of 60,000 for an auto maximum injection
time (IT) with an automatic gain control (AGC) target
value of 3e6. MS2 spectra were obtained in the higher-
energy collisional dissociation (HCD) mode using a
normalized collision energy of 30%, resolution at 15,000
with an auto maximum injection time, AGC target of
le5 and isolation window at 1.6 m/z. For data indepen-
dent acquisition (DIA), isolation window for MS2 was set
to 20 Da window over a precursor mass range of 350—
400 m/z, 9 Da window for 400-800 m/z, 12 Da window
for 800-100 m/z and 25 Da window for 1000-1200 m/z.
AGC target of 5e5 with an auto maximum injection time,
and other parameters were set to be the same as DDA
method.

Mass spectrometry data analysis

DDA MS/MS spectra were searched using Protein Dis-
coverer 2.4 (Thermo Scientific, USA) against a Uni-
portKB human database (UP000005640). The following
settings were used: trypsin was set to the protease and
one missed cleavage allowed; The precursor mass toler-
ance was set to 10 ppm, and the fragmentation ion mass
tolerance was set to 0.02 Da. The maximum number of
variable modifications was set to 2. The false discovery
rate (FDR) was set at 1% at both the peptide and protein
level.

DIA MS/MS spectra were searched using the DIA-NN
(version 1.7.15) software with a UniportKB human data-
base (UP000005640). The precursor mass tolerance was
set to 10 ppm, trypsin was set to the protease and one
missed cleavage allowed. The maximum number of vari-
able modifications was set to 3. Precursor mass range was
from 350 to 1250 m/z, while the fragmentation ion mass
range was from 100 to 2000 m/z. The false discovery rate
(FDR) was set at 1% at both the peptide and protein level.

For differential expression analysis, proteins with more
than 50% missing values were removed. The distribution
of protein expression was tested for normality across all
samples, then t-test was applied for those with normal
distribution, while Wilcoxon ranked sum test was per-
formed for those failed to pass the normality test.

Multiple reaction monitoring (MRM) quantitation of
plasma proteins

Concentrations of target proteins in the plasma were
measured using MRM method on a QTRAP 6500 mass
spectrometer (Sciex, USA). The instrument parameters
of the MRM assay were optimized for each synthetic
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peptide by directly infusing the peptides into the mass
spectrometer. The top two high-intensity product ions
of each peptide precursor ion were selected based on the
optimal collision energy (CE) values and collision cell
exit potential (CXP). All optimized data were collected
and compared to theoretical spectra, and high-intensity
y-ions were used for subsequent MRM assays.

The peptides were separated using an LC-40D X3
(Shimadzu, Japan) liquid chromatographic system. The
mobile phase A was 0.1% formic acid in distilled water,
and the mobile phase B was 0.1% formic acid in 100%
acetonitrile. Peptides were reconstituted in mobile phase
A, 15 uL of each sample was loaded into the sample loop.
A gradient consisting of 13% B for 1.5 min, 13—-48% buf-
fer B for 4.5 min, 48—98% for 0.5 min, 98% for 1.5 min,
98-13% B for 0.1 min, and 13% B for 1.9 min was used.
The MS detection was carried out in positive mode with
the following parameters: electrospray voltage of 5500 V,
curtain gas at 40 psi, ion source gas 1 (GS1) at 55 psi, ion
source gas 2 (GS2) at 55 psi, and temperature at 500 °C.
Quantitation were performed using the scheduled MRM
mode. The time of MRM detection window was 180 s,
and the cycle time was 1.0 s.

The mass spectrometer was controlled by the Analyst
software (Sciex, USA), and the raw data were analyzed by
Sciex OS software (Sciex, USA). Calibration curves for
each peptide were generated using synthetic peptides and
stable-isotope labeled internal standards with a linear
regression coefficient of determination (R?)>0.99.

GO and KEGG pathway analysis

GO and KEGG enrichment analysis were performed
using Metascape (https://metascape.org/), David bioinfo
rmatics resource v6.8 (https://david.ncifcrf.gov/).

Statistical analysis

R (version 4.1.1) was used for all the statistical analy-
sis, Prior to analysis, rigorous preprocessing steps were
applied to the data. First, the data was normalized by
column sum. Next, outliers were removed to mitigate
the impact of extreme values on subsequent analyses.
Proteins with less than 50% of missing data across all
samples were imputed using a random forest imputa-
tion method to minimize information loss. Principal
Component Analysis (PCA) was then applied to reduce
the dimensionality of the dataset and explore the major
sources of variation.

To assess the assumptions required for parametric
tests, we tested for normality and homoscedasticity.
Depending on the sample size and distribution charac-
teristics, we employed the Shapiro-Wilk test to assess
the normality of data distribution and Levene’s test to
examine homogeneity of variance. For samples that met
the assumptions of normality and homoscedasticity,
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parametric analyses were performed. Conversely, non-
parametric analyses were conducted for samples that did
not satisfy these assumptions. To compare two groups,
we utilized both parametric t-tests and non-parametric
Mann-Whitney U tests, depending on the data distri-
bution and underlying assumptions. All tests were two
sided, and p values<0.05 were considered statistically
significant, and fold change>1.2 or <0.83 were consid-
ered as up- or down-regulated, respectively.

Feature selection and logistic regression

For the peptides with P value<0.05 and fold change of
1.2 between malignant and benign groups, we considered
these peptides showing consistent expression trend at
protein level. 12 peptides were selected as the target lists,
and random combinations of 3, 4, up to 12 from the 12
features were considered, using AUC values as a selec-
tion criterion. Finally, we selected a panel of 6-peptide
markers which had the AUC among the top and balanc-
ing sensitivity and specificity. The expression values of
the six peptides were used as features in a logistic regres-
sion model to classify subjects as having either benign or
malignant nodules.

Survival analysis

For Kaplan-Meier survival analysis, log-rank test was
applied to analyze differences in survival time [15]. The
influence of gene expression on survival time was evalu-
ated by the Cox proportional hazard model. Samples
were stratified according to transcription levels: samples
with gene expression higher than 50% were considered
as the high-expression cohort, while samples with gene
expression lower than 50% were considered as the low-
expression cohort. The lung adenocarcinoma RNAseq
dataset from TCGA (Dataset ID: TCGA.LUAD. sam-
pleMap/HiSeqV2) was used, and clinical information was
downloaded from the UCSC genome browser (https://xe
nabrowser.net/).

Results

Study design

The design of this study is shown in Fig. 1. We enrolled
three cohorts of patients from two hospitals, with each
patient pathologically confirmed as having either benign
or malignant pulmonary nodule. Cohort 1 (80 patients)
was used for discovery study whereas cohort 2 (46
patients) and cohort 3 (59 patients) were used for valida-
tion studies as two independent cohorts. Plasma samples
from cohort 1 were used for differential protein expres-
sion analysis to compare patients between malignant ver-
sus benign nodules. From the list of proteins with altered
expression, candidate protein biomarkers were selected
and logistic regression classification was applied to iden-
tify panels of proteins whose expression can differentiate
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Plasma from patients with pulmonary nodules
Cohort 1 (discovery): 40 benign, 40 malignant
Cohort 2 (Validation): 20 benign, 26 malignant
Cohort 3 (Validation): 24 benign, 35 malignant

Protein quantification using DIA MS

Differential protein expression analysis

Cohort 1 Candidate biomarker selection

Logistic regression modeling

6-protein marker with locked parameters

Validation using cohort 2

Validation using cohort 3

6-Peptide quantification using MRM
Training: 62 benign, 90 malignant
Testing: 27 benign, 54 malignant

Fig. 1 Study design. Flow chart showing the design this study
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nodule types between benign and malignant. These bio-
marker panels were further validated by two independent
cohorts from two hospitals. In the assay development
phase, an MRM method was applied to a subset of 155
plasma samples from the 185 subjects in the three DIA
cohorts and 78 newly collected samples to measure the
plasma concentration of selected protein biomarkers
using the signature peptides. The demographic data for
all the patients enrolled in this study is shown in Table 1.

Quantitative mass spectrometric analysis of plasma
proteome from patients with benign and malignant
pulmonary nodules

We applied data-independent acquisition mass spec-
trometry technology (DIA-MS) to quantify the plasma
proteome. To ensure the high quality of our data acqui-
sition process, we interspersed quality control (QC)
samples during mass spectrometry data acquisition. The
QC sample is the mixture of a small portion from each
plasma sample from all patients in the discovery stage.
The correlation coefficients of all the QC samples were
over 0.99 (Fig. S1A), indicating high consistency and
reproducibility of our experimental procedure. Signal
intensity of proteins spans six orders of magnitude (Fig.
S1B), indicating that even after depletion of high-abun-
dance proteins the dynamic range of protein abundance
remains high.

In total, we quantified 451 proteins from 80 plasma
samples in cohort 1 (Fig. S1C, Table S1). Using a statis-
tical significance cutoff of 0.05 and fold change cutoft of
1.2, we identified 15 up-regulated and 5 down-regulated
proteins, which were shown in a volcano plot (Fig. 2A).
Heat map of the differentially expressed proteins showed
that while these proteins display subtle expression
patterns, variabilities among each of the two groups
appeared more evident (Fig. 2B). This was also sup-
ported by the principal component analysis showing that
the two groups, benign (BE) and malignant (MA) could
not be separated by these proteins, and that PC1 only
explained 7.42% of the variability (Fig. 2C). Gene ontol-
ogy analysis and KEGG pathway analysis showed that the
most enriched molecular function was involved in cho-
lesterol metabolism, and lipid transport and lipoproteins
were among the enriched biological pathways. Not sur-
prisingly, exosomes were among the most enriched cel-
lular components (Fig. 2D). The proteins representing
these pathways included apolipoprotein Al (APOAI),
apolipoprotein A2 (APOAZ2), apolipoprotein D (APOD),
apolipoprotein A4 (APOA4), to name a few.

Discovery of a plasma protein biomarker panel to
distinguish benign from malignant nodules

To identify biomarkers that can accurately differenti-
ate benign from malignant nodules, we focused on
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proteotypic peptides as surrogates of six protein mark-
ers comprised of APOA4, CD14, PFN1, APOB, PLA2G7,
and IGFBP2 (Fig. 3). The peptide sequences were listed
in Table 2. The expression at protein level was also pre-
sented, among these proteins, APOA4, CD14, and PFN1
showed significantly differential expression, while APOB,
PLA2G7, and IGFBP2 showed a P value greater than
0.05 (Fig. S2). Nevertheless, using these six proteins as
a panel and cohort 1 as the discovery set, PCA showed
improved separation between benign and malignant nod-
ules, and the first principal component explained 30% of
the variability (Fig. 4A). We then built a logistic regres-
sion classification model for the six-protein panel, and
resulted in an AUC of the receiver operator characteristic
(ROC) curve of 0.87 and 0.91, in the training and testing
set, respectively (Fig. 4B). The distribution of sensitivity,
specificity, PPV, and NPV values as the function of the
threshold used to calculate logistic regression odds ratios
were shown in Fig. 4C, which indicated that a thresh-
old value of 0.164 balanced all four values. Using this
threshold value, the sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV)
were calculated from the confusion matrix (Fig. 4D), and
resulting in 1.0, 0.40, 0.625, and 1.0, respectively.

Validation of the plasma protein biomarker panel in
independent patient cohorts

We used Cohort 2 and 3 as the independent validation
cohorts to assess the classification accuracy of the panel.
While the plasma samples from cohort 2 was indepen-
dently collected from the same hospital, plasma samples
from cohort 3 was from a different hospital. The same
DIA-MS method was applied to quantify plasma pro-
teins. Although the PCA generated from the intensities
of the six-protein panel measured from these two patient
cohorts showed no obvious separation, the first com-
ponent explained about 30% of the variation for both
cohorts (Fig. 5, A-B). Using the logistic regression param-
eters and the threshold value to classify benign from
malignant nodules, the AUC of the ROC curve remained
0.82 and 0.81, respectively (Fig. 5C). The biomarker panel
showed a sensitivity, specificity, PPV, and NPV of 0.962,
0.35, 0.658, and 0.875 respectively in cohort 2 (Fig. 5D,
upper panel), and of 0.914, 0.542, 0.744, and 0.813
respectively in cohort 3 (Fig. 5D, lower panel).

The plasma protein biomarker panel is capable of
detecting malignant pulmonary nodules with high
accuracy

As DIA is a relative quantification method and MRM is
able to measure the absolute concentration of biomark-
ers with high throughput, we developed an MRM assay
to measure the plasma concentration of the 6 proteins by
measuring the signature peptides using heavy arginine/
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Gene Ontology (GO) analysis of differentially expressed proteins between patients and healthy controls
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Fig. 3 Peptide intensity plot at the peptide level of feature proteins selected for logistic regression analysis. Boxplot showing differential expression of
represented peptides from six proteins between patient groups confirmed as either malignant (MA) or benign (BE) nodules. Cohort 1: discovery stage,
cohort 2: validation 1, cohort 3: validation 2. Note that patients in cohort 2 and 3 are from two different hospitals
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Table 2 Selected peptide feature sequences

Protein name Peptide sequence Precursor charge
APOA4 SELTQQLNALFQDK 2
APOB TSSFALNLPTLPEVK 3
D14 AFPALTSLDLSDNPGLGER 3
IGFBP2 LEGEACGVYTPR 2
PEN1 STGGAPTFNVTVTK 2
PLA2G7 IAVIGHSFGGATVIQTLSEDQR 3

lysine-labeled peptides as internal standards combined
with external calibration using unlabeled peptides (Table
S2). We focused on proteotypic peptides as surrogates
of six protein biomarker panel comprised of APOA4,
CD14, PFN1, APOB, PLA2G7, and IGFBP2. The pep-
tide sequences and transition ion information were listed
in Table S3. Because the peptide representing PFNI1 is
enriched in serine and threonine residues that could be
phosphorylated, we monitored two synthetic peptides
using the MRM assay. The peptide STGGAPTENVTVTK
which was identified by DIA showed strong signal (Fig.
S3A), whereas an alternative peptide DSPSVWAAVPGK
showed poor signal (Fig. S3B). Therefore, we selected the
former peptide for quantification. The above six pep-
tides showed superior product ion peaks in our LC-MS/
MS system, with the covariance (CV) of seven repeated
measurements of a same sample mixture below 10% (Fig.
S3C). Among these peptides, APOA4, IGFBP2 and PEN1
showed significantly differential expression (Fig. 6A). A
subset of 62 benign and 90 malignant nodule subjects
were used as the training cohort, and 27 benign and
54 malignant nodule subjects were used as the testing
cohort (Fig. 1). Using concentrations of the six peptides
to build a logistic model, the classifier achieved an aver-
age AUC of the ROC curve of 0.758 (95% CI 0.683-0.834)
in the training dataset and 0.751 (95% CI 0.634—0.868) in
the testing dataset (Fig. 6B). Using the logistic regression
parameters and threshold value to classify benign from
malignant nodules, the biomarker panel showed a sensi-
tivity, specificity, PPV, and NPV of 0.922, 0.419, 0.697 and
0.788 respectively in the training dataset (Fig. 6C, upper
panel), and of 0.926,0.370,0.746 and 0.714 respectively in
the testing dataset (Fig. 6C, lower panel).

Survival analysis of biomarker panel proteins

We further utilized The Cancer Genome Atlas (TCGA)
database, and performed survival analysis to find whether
there was any correlation between gene expression of
the biomarker proteins and the survival of lung cancer
patients. Kaplan-Meier analysis and log-rank test showed
that increased expression of PFN1 gene significantly cor-
related with poor overall survival (OS) and disease-free
survival (DES) (Fig. S4, A-B). In contrast, none of the
other five proteins in the six-protein panel showed signif-
icance (data not shown). Similarly, APOA1 and ALDOB,
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two significantly expressed proteins but not in the six-
protein panel, also showed no statistical significance (Fig.
S4, C-D).

Discussion

Based on plasma protein expression profiles and itera-
tive feature selection, we identified a six-protein panel
consisting of APOA4, APOB, CD14, PEN1, PLA2G7,
and IGFBP2 to classifying pulmonary nodule patients
between benign and malignant nodules. While these pro-
teins have not been directly associated with pulmonary
nodule previously, some have been connected to lung
cancer. APOA4 was found over expressed in the serum
and the respiratory epithelium of atypical adenomatous
hyperplasia patients [16]. CD14" cells play an important
role in tumor microenvironment, and a recent study
shows that levels of CD14" cells negatively correlate with
overall survival of lung cancer patients [17], and CD14"*
macrophages may exert a broader function in other can-
cers as well. As an actin-binding protein, profilin (PFN1)
plays an important role in actin dynamics and has been
reported to induce tumor metastasis in non-small cell
lung cancer through promoting microvesicle secretion
[18]. Regardless, PFN1 were also identified as plasma
biomarkers for various disease ranging from infection
disease, nervous system disorder to cardiovascular disor-
ders. [19-21]. IGFBP2 has been shown to promote cancer
progression in multiple cancers through various signaling
pathways downstream of insulin signaling [2-24], and its
expression in serum is considered as a biomarker for lung
cancer [25, 26]. Thus, these results documented in litera-
ture provide additional level of support for the protein
markers discovered in our study.

Comparing to known protein biomarkers used in clinic
to manage pulmonary nodule patients, the sensitivity,
specificity, NPV and AUC of the panel of proteins dis-
covered in our study are generally improved. In a similar
study, although protein biomarkers were combined with
clinical information to construct an integrated classi-
fier to classify benign and malignant nodules, the AUC
of the classifier was 0.76, only slight improvement than
the classical model developed by Mayo Clinic using clini-
cal characteristics alone [12]. Our study only utilized
protein biomarkers, and reached a satisfactorily AUC of
over 0.81 in all three data sets. Nevertheless, the speci-
ficity and PPV of this model were not as good as in dis-
covery data set. To rule out the possibility of overfitting
due to limited sample size in the discovery data set, we
collected two additional sets of independent samples to
validate our results. Both validation data sets resulted an
AUC of the ROC curve close to that of the discovery data
set, which is a better performance comparing to similar
studies. Although the calculated NPV was not as optimal
as previously reported studies [12, 27], when considering
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the prevalence of pulmonary nodules into the calcula-
tion, the NPV can reach as high as nearly 1.0, but at the
cost of low PPV (Fig. 4B). Thus, a balance is needed for

the test under development to be clinically useful.

Distinguishing benign from malignant small pulmo-
nary nodules with an intermediate risk has been a long-
lasting clinical challenge to physicians. A balance needs
to be reached between utilizing aggressive diagnostic
methods to detect malignant nodule and sparing patients
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from invasive procedures for those with benign nodules.
Improving the sensitivity and specificity of a blood-based
non-invasive test, when applying to intermediate-risk
patients can deliver high NPV, thus prevents patients
from having to go through unnecessary invasive pro-
cedures. A two-year follow up study of the PANOPTIC
test concluded that applying the non-invasive test to
nodule patients with a pretest probability of cancer of
<50% resulted in a 40% reduction in invasive procedures
accompanied by 3% misclassified malignant nodules [28].
A prospective observational study found that patients
with pretest probability of cancer of <50% tested with the
integrated classifier were 74% less likely to undergo an
invasive procedure [29]. Because our study is at an early
validation phase, large number of subjects are needed for
further study to assess the clinical utility. Based on our
improved sensitivity and specificity, we predict that our
6-protein panel should perform in par with the clinical
utility offered from the PANOPTIC method.

The strength of this study lies in that two independent
data sets were used to validate the initial study, and that
patients from two different hospitals were recruited.
Future development of the test can focus on dramatically
improved NPV, which can divert nearly 60% of patients
with benign nodule to CT surveillance. Because the test
is non-invasive, thus avoiding invasive biopsy procedures
and reducing patient burdens. The limitations of the
study are the relatively small sample size. Further refine-
ment and validation of this panel of biomarker proteins
with increased sample size is warranted.

Conclusion

Our study provides retrospective plasma proteomic pro-
files of patients diagnosed with benign and malignant
pulmonary nodules. Our results provide new panel of
protein biomarkers for distinguishing benign and malig-
nant pulmonary nodules that worth further development
into clinically useful blood tests.
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