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Abstract
Background Pulmonary nodule with diameters ranging 8–30 mm has a high occurrence rate, and distinguishing 
benign from malignant nodules can greatly improve the patient outcome of lung cancer. However, sensitive and 
specific liquid-biopsy methods have yet to achieve satisfactory clinical goals.

Methods We enrolled three cohorts and a total of 185 patients diagnosed with benign (BE) and malignant (MA) 
pulmonary nodules. Utilizing data-independent acquisition (DIA) mass spectrometry, we quantified plasma proteome 
from these patients. We then performed logistic regression analysis to classify benign from malignant nodules, using 
cohort 1 as discovery data set and cohort 2 and 3 as independent validation data sets. We also developed a targeted 
multi-reaction monitoring (MRM) method to measure the concentration of the selected six peptide markers in plasma 
samples.

Results We quantified a total of 451 plasma proteins, with 15 up-regulated and 5 down-regulated proteins from 
patients diagnosed as having malignant nodules. Logistic regression identified a six-protein panel comprised 
of APOA4, CD14, PFN1, APOB, PLA2G7, and IGFBP2 that classifies benign and malignant nodules with improved 
accuracy. In cohort 1, the area under curve (AUC) of the training and testing reached 0.87 and 0.91, respectively. We 
achieved a sensitivity of 100%, specificity of 40%, positive predictive value (PPV) of 62.5%, and negative predictive 
value (NPV) of 100%. In two independent cohorts, the 6-biomarker panel showed a sensitivity, specificity, PPV, and 
NPV of 96.2%, 35%, 65.8%, and 87.5% respectively in cohort 2, and 91.4%, 54.2%, 74.4%, and 81.3% respectively in 
cohort 3. We performed a targeted LC-MS/MS method to quantify plasma concentration of the six peptides and 
applied logistic regression to classify benign and malignant nodules with AUC of the training and testing reached 
0.758 and 0.751, respectively.

Conclusions Our study identified a panel of plasma protein biomarkers for distinguishing benign from malignant 
pulmonary nodules that worth further development into a clinically valuable assay.
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Background
Each year around 1.6 million people in the United States 
are diagnosed with pulmonary nodule [1], whereas 
several population-based studies estimated nodule 
occurrence rate between 3 and 13% (Oudkerk, Liu, Heu-
velmans, Walter, & Field [2]), imposing serious health 
care issues to the society. The initial diagnosis of pulmo-
nary nodule is usually made from low-dose computed 
tomography (LDCT), in which the probability of malig-
nancy reaches 10–80% in nodules with a size greater than 
10 mm, whereas nearly 99% of nodules are benign with 
a size less than 6 mm [1]. Nodules with the size between 
5 ~ 30 mm presents a dilemma to clinicians, because the 
estimated probability of cancer between 5 ~ 65% [3] is 
too wide a range to be actionable: surgical procedures 
may result in over treatment leading to various complica-
tions, whereas nodules left untreated may bear the risk 
of malignancy and tumor progression. Thus, developing 
sensitive diagnostic methods to differentiate benign from 
malignant nodules is critically important.

Currently, non-invasive diagnostic methods such as 
liquid biopsy detect tumor-derived nucleic acids or dif-
ferentially expressed proteins in the blood or other 
body fluids. Circulating tumor cells provide a plethora 
of tumor-derived nucleic acid species for detection, 
including circulating tumor DNA (ctDNA) [4], cell-free 
DNA (cfDNA) [5], as well as circulating messenger RNA 
(mRNA) and long non-coding RNA (lncRNA) [6]. Detec-
tion of nucleic acids derived from circulating tumor cells 
possess the intrinsic property of specificity for detect-
ing cancer, therefore greatly reduces the false positive 
rates. Aided by newer generation sequencing methods, 
it also maintains a high sensitivity, especially applicable 
in bronchoalveolar fluids [7]. In addition, methylation of 
panels of tumor suppressor genes and/or oncogenes also 
produced satisfactory sensitivity and specificity in dis-
tinguishing between lung cancer and benign pulmonary 
nodules, and has the potential of clinical utility [8, 9]. 
Other blood-derived inflammation parameters including 
neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte 
ratio, and systemic immune-inflammation index have 
been assessed to associate with malignant pulmonary 
nodules with mild odds ratios [10].

In contrast to the wide range of biomarker studies uti-
lizing nucleic acid as targets, studies on protein biomark-
ers are relatively scarce. Notably, Pulmonary Nodule 
Plasma Proteomic Classifier (PANOPTIC) presented an 
integrated protein biomarker incorporating several key 
clinical features to distinguish benign from malignant 
nodules [11–13], it is by far the only mass spectrometry-
based assay that has been used in clinic to manage nodule 
patients. A two-year follow-up study shows that with a 
sensitivity of 97%, specificity of 44%, and negative predic-
tive value of 98%, this biomarker performs superior than 

physician estimates of probability of cancer [14]. Never-
theless, this biomarker panel still suffers from low speci-
ficity and thus relatively poor positive predictive value, 
therefore further development on protein biomarker 
panel remains warranted.

In this study, we applied quantitative mass spectrom-
etry technology to retrospectively compare the plasma 
proteome between patients diagnosed with benign and 
malignant pulmonary nodules. The nature of the nodule 
was pathologically confirmed through fine-needle aspi-
ration. We captured unique molecular features of the 
plasma proteome from patients with malignant nodule. 
Using these features, we applied logistic regression to dis-
cover a panel of protein biomarkers that perform well in 
distinguish benign from malignant pulmonary nodules.

Methods
Human samples
The study started in June 30th, 2020 and ended in August 
31st, 2022. Peripheral venous blood samples were col-
lected before surgery. The patient recruitment criteria 
included: the overall groups of benign and malignant 
samples were matched in gender, nodule size and age. 
Using a population based non-small-cell lung cancer 
prevalence estimate, patients whose nodule size lies 
between 3 mm and 30 mm were included. Patients with 
a history of other cancers were excluded. The study was 
approved by the hospital’s institutional review com-
mittee. The participants provided the written informed 
consent. T test and chi-squared test were applied to the 
clinical information and to ensure that there was no sta-
tistical significance in clinical factors between the two 
patient groups. The study conformed to the Declara-
tion of Helsinki and was approved by the Medical Ethics 
Committee of The First Affiliated Hospital of Zhengzhou 
University (Study license number 2020-KY-308) and 
Chongqing University Cancer Hospital (Study license 
number CZLS2023268-A).

In the discovery cohort (cohort 1), plasma samples 
from 40 patients diagnosed with benign and 40 patients 
diagnosed with malignant pulmonary nodules were col-
lected from First Affiliated Hospital of Zhengzhou Uni-
versity. In two independent validation cohorts - cohort 
2 (20 benign, 26 malignant) and cohort 3 (24 benign, 35 
malignant), the plasma samples were collected from The 
First Affiliated Hospital of Zhengzhou University and 
Chongqing University Cancer Hospital, respectively. 
We calculated the effect size of the six protein markers 
using the normalized intensity results, taken into con-
sideration the fold changes and pooled standard devia-
tion of both benign and malignant groups. The Cohen’s 
d ranges from small effect size of 0.213 to large effect size 
of 0.921 among the six peptides. By calculating the theo-
retical effect size given existing sample size of 40 in each 
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group, α of 0.05 and a power of 0.8, resulting the effect 
size d = 0.634, at least two protein markers reached this 
desired effect size in the discovery cohort.

Processing of plasma samples
For DIA proteome discovery assay, the plasma samples 
were depleted of top 14 high-abundant proteins (Cat. 
#A36370, Thermo Science, USA), and BCA kit was used 
to determine the protein concentration in plasma sam-
ples. From each sample, 25 µg proteins were suspended 
in NH4HCO3 solution with a final concentration of 50 
mM. The proteins were reacted with 10 mM DTT at 
95  °C for 10  min and alkylated with 15 mM iodoacet-
amide (Cat. # I1149, Sigma Aldrich, USA) in darkness 
for 30  min and digested with sequencing grade trypsin 
(1:50; Cat. # V5113, Promega, USA) overnight at 37  °C. 
The resulting peptides were desalted with 96-well SOLA 
solid-phase extraction apparatus, and vacuum dried for 
mass spectrometry analysis.

For the MRM experiments, 8 µL plasma samples were 
also depleted of top 14 high-abundant proteins. For each 
sample, 20  µg proteins were subsequently processed 
the same way as described in DIA experiments. The six 
internal standards using synthetic stable isotope-labeled 
peptides were spiked in the proteotypic peptides or the 
standard curve samples at a final concentration of 25 ng/
mL for each peptide for absolute quantification (Synpep-
tide, China). The resulting peptides were desalted with 
96-well SOLA solid-phase extraction apparatus, and 
vacuum dried. The resulting peptides were resuspended 
in 80 µL 0.1% FA, and 15 µL were injected for mass spec-
trometry analysis.

Data-independent acquisition mass spectrometry (DIA-MS) 
of plasma samples
Protein digests were analyzed using an EASY-nLC 1200 
LC coupled with Q-Exactive Explories 240 mass spec-
trometer (ThermoScientific, USA). To assess the stabil-
ity of the analytical system, a QC sample composed of a 
small aliquot of each sample was interspersed in every 
five samples. In addition, the sequence of the sample run 
was completely randomized. For the LC separation, the 
mobile phases consisted of buffer A (100% ddH2O, 0.1% 
formic acid) and buffer B (80% ACN, 0.1% formic acid). 
Peptides were resuspended in buffer A and spiked with 
iRT peptides (Omicsolution, China). An equivalent to 1.5 
ug of protein digest from each sample was loaded onto a 
C18 column (Cat. #164941, Thermo Science, USA) con-
nected with a pre-column (Cat. #164535, Thermo Scien-
tific, USA) and separated at a flow rate of 300 nL/ min. A 
90 min gradient from 1 to 8% buffer B in 1 min, 8–28% in 
71 min, 28–40% in 9 min, 40–100% in 2 min, and 100% 
for 7 min was used.

The MS instrument was operated in the positive mode 
and centroid mode with a nano-electrospray through 
a heated ion transfer tube with a temperature setting of 
320  °C. For data dependent acquisition (DDA), one full 
scan MS from 350 to 1500 m/z followed by 20 MS2 scans 
were continuously acquired. MS spectra were acquired 
with resolution of 60,000 for an auto maximum injection 
time (IT) with an automatic gain control (AGC) target 
value of 3e6. MS2 spectra were obtained in the higher-
energy collisional dissociation (HCD) mode using a 
normalized collision energy of 30%, resolution at 15,000 
with an auto maximum injection time, AGC target of 
1e5 and isolation window at 1.6 m/z. For data indepen-
dent acquisition (DIA), isolation window for MS2 was set 
to 20 Da window over a precursor mass range of 350–
400 m/z, 9 Da window for 400–800 m/z, 12 Da window 
for 800–100 m/z and 25 Da window for 1000–1200 m/z. 
AGC target of 5e5 with an auto maximum injection time, 
and other parameters were set to be the same as DDA 
method.

Mass spectrometry data analysis
DDA MS/MS spectra were searched using Protein Dis-
coverer 2.4 (Thermo Scientific, USA) against a Uni-
portKB human database (UP000005640). The following 
settings were used: trypsin was set to the protease and 
one missed cleavage allowed; The precursor mass toler-
ance was set to 10 ppm, and the fragmentation ion mass 
tolerance was set to 0.02 Da. The maximum number of 
variable modifications was set to 2. The false discovery 
rate (FDR) was set at 1% at both the peptide and protein 
level.

DIA MS/MS spectra were searched using the DIA-NN 
(version 1.7.15) software with a UniportKB human data-
base (UP000005640). The precursor mass tolerance was 
set to 10 ppm, trypsin was set to the protease and one 
missed cleavage allowed. The maximum number of vari-
able modifications was set to 3. Precursor mass range was 
from 350 to 1250 m/z, while the fragmentation ion mass 
range was from 100 to 2000 m/z. The false discovery rate 
(FDR) was set at 1% at both the peptide and protein level.

For differential expression analysis, proteins with more 
than 50% missing values were removed. The distribution 
of protein expression was tested for normality across all 
samples, then t-test was applied for those with normal 
distribution, while Wilcoxon ranked sum test was per-
formed for those failed to pass the normality test.

Multiple reaction monitoring (MRM) quantitation of 
plasma proteins
Concentrations of target proteins in the plasma were 
measured using MRM method on a QTRAP 6500 mass 
spectrometer (Sciex, USA). The instrument parameters 
of the MRM assay were optimized for each synthetic 
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peptide by directly infusing the peptides into the mass 
spectrometer. The top two high-intensity product ions 
of each peptide precursor ion were selected based on the 
optimal collision energy (CE) values and collision cell 
exit potential (CXP). All optimized data were collected 
and compared to theoretical spectra, and high-intensity 
y-ions were used for subsequent MRM assays.

The peptides were separated using an LC-40D X3 
(Shimadzu, Japan) liquid chromatographic system. The 
mobile phase A was 0.1% formic acid in distilled water, 
and the mobile phase B was 0.1% formic acid in 100% 
acetonitrile. Peptides were reconstituted in mobile phase 
A, 15 µL of each sample was loaded into the sample loop. 
A gradient consisting of 13% B for 1.5 min, 13–48% buf-
fer B for 4.5 min, 48–98% for 0.5 min, 98% for 1.5 min, 
98–13% B for 0.1 min, and 13% B for 1.9 min was used. 
The MS detection was carried out in positive mode with 
the following parameters: electrospray voltage of 5500 V, 
curtain gas at 40 psi, ion source gas 1 (GS1) at 55 psi, ion 
source gas 2 (GS2) at 55 psi, and temperature at 500 °C. 
Quantitation were performed using the scheduled MRM 
mode. The time of MRM detection window was 180  s, 
and the cycle time was 1.0 s.

The mass spectrometer was controlled by the Analyst 
software (Sciex, USA), and the raw data were analyzed by 
Sciex OS software (Sciex, USA). Calibration curves for 
each peptide were generated using synthetic peptides and 
stable-isotope labeled internal standards with a linear 
regression coefficient of determination (R2) ≥ 0.99.

GO and KEGG pathway analysis
GO and KEGG enrichment analysis were performed 
using Metascape (https://metascape.org/), David  b i o i n f o 
r m a t i c s resource v6.8 (https://david.ncifcrf.gov/).

Statistical analysis
R (version 4.1.1) was used for all the statistical analy-
sis, Prior to analysis, rigorous preprocessing steps were 
applied to the data. First, the data was normalized by 
column sum. Next, outliers were removed to mitigate 
the impact of extreme values on subsequent analyses. 
Proteins with less than 50% of missing data across all 
samples were imputed using a random forest imputa-
tion method to minimize information loss. Principal 
Component Analysis (PCA) was then applied to reduce 
the dimensionality of the dataset and explore the major 
sources of variation.

To assess the assumptions required for parametric 
tests, we tested for normality and homoscedasticity. 
Depending on the sample size and distribution charac-
teristics, we employed the Shapiro-Wilk test to assess 
the normality of data distribution and Levene’s test to 
examine homogeneity of variance. For samples that met 
the assumptions of normality and homoscedasticity, 

parametric analyses were performed. Conversely, non-
parametric analyses were conducted for samples that did 
not satisfy these assumptions. To compare two groups, 
we utilized both parametric t-tests and non-parametric 
Mann-Whitney U tests, depending on the data distri-
bution and underlying assumptions. All tests were two 
sided, and p values < 0.05 were considered statistically 
significant, and fold change > 1.2 or < 0.83 were consid-
ered as up- or down-regulated, respectively.

Feature selection and logistic regression
For the peptides with P value < 0.05 and fold change of 
1.2 between malignant and benign groups, we considered 
these peptides showing consistent expression trend at 
protein level. 12 peptides were selected as the target lists, 
and random combinations of 3, 4, up to 12 from the 12 
features were considered, using AUC values as a selec-
tion criterion. Finally, we selected a panel of 6-peptide 
markers which had the AUC among the top and balanc-
ing sensitivity and specificity. The expression values of 
the six peptides were used as features in a logistic regres-
sion model to classify subjects as having either benign or 
malignant nodules.

Survival analysis
For Kaplan-Meier survival analysis, log-rank test was 
applied to analyze differences in survival time [15]. The 
influence of gene expression on survival time was evalu-
ated by the Cox proportional hazard model. Samples 
were stratified according to transcription levels: samples 
with gene expression higher than 50% were considered 
as the high-expression cohort, while samples with gene 
expression lower than 50% were considered as the low-
expression cohort. The lung adenocarcinoma RNAseq 
dataset from TCGA (Dataset ID: TCGA.LUAD. sam-
pleMap/HiSeqV2) was used, and clinical information was 
downloaded from the UCSC genome browser  (   h t t p s : / / x e 
n a b r o w s e r . n e t /     ) .  

Results
Study design
The design of this study is shown in Fig. 1. We enrolled 
three cohorts of patients from two hospitals, with each 
patient pathologically confirmed as having either benign 
or malignant pulmonary nodule. Cohort 1 (80 patients) 
was used for discovery study whereas cohort 2 (46 
patients) and cohort 3 (59 patients) were used for valida-
tion studies as two independent cohorts. Plasma samples 
from cohort 1 were used for differential protein expres-
sion analysis to compare patients between malignant ver-
sus benign nodules. From the list of proteins with altered 
expression, candidate protein biomarkers were selected 
and logistic regression classification was applied to iden-
tify panels of proteins whose expression can differentiate 

https://metascape.org/
https://david.ncifcrf.gov/
https://xenabrowser.net/
https://xenabrowser.net/
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Fig. 1 Study design. Flow chart showing the design this study

 



Page 6 of 15Jia et al. Clinical Proteomics           (2025) 22:11 

nodule types between benign and malignant. These bio-
marker panels were further validated by two independent 
cohorts from two hospitals. In the assay development 
phase, an MRM method was applied to a subset of 155 
plasma samples from the 185 subjects in the three DIA 
cohorts and 78 newly collected samples to measure the 
plasma concentration of selected protein biomarkers 
using the signature peptides. The demographic data for 
all the patients enrolled in this study is shown in Table 1.

Quantitative mass spectrometric analysis of plasma 
proteome from patients with benign and malignant 
pulmonary nodules
We applied data-independent acquisition mass spec-
trometry technology (DIA-MS) to quantify the plasma 
proteome. To ensure the high quality of our data acqui-
sition process, we interspersed quality control (QC) 
samples during mass spectrometry data acquisition. The 
QC sample is the mixture of a small portion from each 
plasma sample from all patients in the discovery stage. 
The correlation coefficients of all the QC samples were 
over 0.99 (Fig. S1A), indicating high consistency and 
reproducibility of our experimental procedure. Signal 
intensity of proteins spans six orders of magnitude (Fig. 
S1B), indicating that even after depletion of high-abun-
dance proteins the dynamic range of protein abundance 
remains high.

In total, we quantified 451 proteins from 80 plasma 
samples in cohort 1 (Fig. S1C, Table S1). Using a statis-
tical significance cutoff of 0.05 and fold change cutoff of 
1.2, we identified 15 up-regulated and 5 down-regulated 
proteins, which were shown in a volcano plot (Fig. 2A). 
Heat map of the differentially expressed proteins showed 
that while these proteins display subtle expression 
patterns, variabilities among each of the two groups 
appeared more evident (Fig.  2B). This was also sup-
ported by the principal component analysis showing that 
the two groups, benign (BE) and malignant (MA) could 
not be separated by these proteins, and that PC1 only 
explained 7.42% of the variability (Fig. 2C). Gene ontol-
ogy analysis and KEGG pathway analysis showed that the 
most enriched molecular function was involved in cho-
lesterol metabolism, and lipid transport and lipoproteins 
were among the enriched biological pathways. Not sur-
prisingly, exosomes were among the most enriched cel-
lular components (Fig.  2D). The proteins representing 
these pathways included apolipoprotein A1 (APOA1), 
apolipoprotein A2 (APOA2), apolipoprotein D (APOD), 
apolipoprotein A4 (APOA4), to name a few.

Discovery of a plasma protein biomarker panel to 
distinguish benign from malignant nodules
To identify biomarkers that can accurately differenti-
ate benign from malignant nodules, we focused on 

proteotypic peptides as surrogates of six protein mark-
ers comprised of APOA4, CD14, PFN1, APOB, PLA2G7, 
and IGFBP2 (Fig.  3). The peptide sequences were listed 
in Table 2. The expression at protein level was also pre-
sented, among these proteins, APOA4, CD14, and PFN1 
showed significantly differential expression, while APOB, 
PLA2G7, and IGFBP2 showed a P value greater than 
0.05 (Fig. S2). Nevertheless, using these six proteins as 
a panel and cohort 1 as the discovery set, PCA showed 
improved separation between benign and malignant nod-
ules, and the first principal component explained 30% of 
the variability (Fig.  4A). We then built a logistic regres-
sion classification model for the six-protein panel, and 
resulted in an AUC of the receiver operator characteristic 
(ROC) curve of 0.87 and 0.91, in the training and testing 
set, respectively (Fig. 4B). The distribution of sensitivity, 
specificity, PPV, and NPV values as the function of the 
threshold used to calculate logistic regression odds ratios 
were shown in Fig.  4C, which indicated that a thresh-
old value of 0.164 balanced all four values. Using this 
threshold value, the sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) 
were calculated from the confusion matrix (Fig. 4D), and 
resulting in 1.0, 0.40, 0.625, and 1.0, respectively.

Validation of the plasma protein biomarker panel in 
independent patient cohorts
We used Cohort 2 and 3 as the independent validation 
cohorts to assess the classification accuracy of the panel. 
While the plasma samples from cohort 2 was indepen-
dently collected from the same hospital, plasma samples 
from cohort 3 was from a different hospital. The same 
DIA-MS method was applied to quantify plasma pro-
teins. Although the PCA generated from the intensities 
of the six-protein panel measured from these two patient 
cohorts showed no obvious separation, the first com-
ponent explained about 30% of the variation for both 
cohorts (Fig. 5, A-B). Using the logistic regression param-
eters and the threshold value to classify benign from 
malignant nodules, the AUC of the ROC curve remained 
0.82 and 0.81, respectively (Fig. 5C). The biomarker panel 
showed a sensitivity, specificity, PPV, and NPV of 0.962, 
0.35, 0.658, and 0.875 respectively in cohort 2 (Fig.  5D, 
upper panel), and of 0.914, 0.542, 0.744, and 0.813 
respectively in cohort 3 (Fig. 5D, lower panel).

The plasma protein biomarker panel is capable of 
detecting malignant pulmonary nodules with high 
accuracy
As DIA is a relative quantification method and MRM is 
able to measure the absolute concentration of biomark-
ers with high throughput, we developed an MRM assay 
to measure the plasma concentration of the 6 proteins by 
measuring the signature peptides using heavy arginine/
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Fig. 2 Quantitative proteomic analysis of plasma samples from patients diagnosed with pulmonary nodule. (A) Volcano plot showing differentially 
expressed proteins in blue (down) or red (up) circles. X-axis shows log2-fold change of plasma proteins between malignant (N = 40) and benign (N = 40) 
nodule patient groups, and y-axis shows log10 of statistical significance values. (B) Heat map of 26 differentially expressed proteins between malignant 
(MA) patients and benign (BE) subjects. Intensities of proteins were log2-transformed. Different color in protein names indicates different biological pro-
cesses derived from these proteins. (C) Principal component analysis of plasma samples from cohort 1 using the plasma proteome expression data. (D) 
Gene Ontology (GO) analysis of differentially expressed proteins between patients and healthy controls

 



Page 9 of 15Jia et al. Clinical Proteomics           (2025) 22:11 

Fig. 3 Peptide intensity plot at the peptide level of feature proteins selected for logistic regression analysis. Boxplot showing differential expression of 
represented peptides from six proteins between patient groups confirmed as either malignant (MA) or benign (BE) nodules. Cohort 1: discovery stage, 
cohort 2: validation 1, cohort 3: validation 2. Note that patients in cohort 2 and 3 are from two different hospitals

 



Page 10 of 15Jia et al. Clinical Proteomics           (2025) 22:11 

lysine-labeled peptides as internal standards combined 
with external calibration using unlabeled peptides (Table 
S2). We focused on proteotypic peptides as surrogates 
of six protein biomarker panel comprised of APOA4, 
CD14, PFN1, APOB, PLA2G7, and IGFBP2. The pep-
tide sequences and transition ion information were listed 
in Table S3. Because the peptide representing PFN1 is 
enriched in serine and threonine residues that could be 
phosphorylated, we monitored two synthetic peptides 
using the MRM assay. The peptide STGGAPTFNVTVTK 
which was identified by DIA showed strong signal (Fig. 
S3A), whereas an alternative peptide DSPSVWAAVPGK 
showed poor signal (Fig. S3B). Therefore, we selected the 
former peptide for quantification. The above six pep-
tides showed superior product ion peaks in our LC-MS/
MS system, with the covariance (CV) of seven repeated 
measurements of a same sample mixture below 10% (Fig. 
S3C). Among these peptides, APOA4, IGFBP2 and PFN1 
showed significantly differential expression (Fig.  6A). A 
subset of 62 benign and 90 malignant nodule subjects 
were used as the training cohort, and 27 benign and 
54 malignant nodule subjects were used as the testing 
cohort (Fig. 1). Using concentrations of the six peptides 
to build a logistic model, the classifier achieved an aver-
age AUC of the ROC curve of 0.758 (95% CI 0.683–0.834) 
in the training dataset and 0.751 (95% CI 0.634–0.868) in 
the testing dataset (Fig. 6B). Using the logistic regression 
parameters and threshold value to classify benign from 
malignant nodules, the biomarker panel showed a sensi-
tivity, specificity, PPV, and NPV of 0.922, 0.419, 0.697 and 
0.788 respectively in the training dataset (Fig. 6C, upper 
panel), and of 0.926,0.370,0.746 and 0.714 respectively in 
the testing dataset (Fig. 6C, lower panel).

Survival analysis of biomarker panel proteins
We further utilized The Cancer Genome Atlas (TCGA) 
database, and performed survival analysis to find whether 
there was any correlation between gene expression of 
the biomarker proteins and the survival of lung cancer 
patients. Kaplan-Meier analysis and log-rank test showed 
that increased expression of PFN1 gene significantly cor-
related with poor overall survival (OS) and disease-free 
survival (DFS) (Fig. S4, A-B). In contrast, none of the 
other five proteins in the six-protein panel showed signif-
icance (data not shown). Similarly, APOA1 and ALDOB, 

two significantly expressed proteins but not in the six-
protein panel, also showed no statistical significance (Fig. 
S4, C-D).

Discussion
Based on plasma protein expression profiles and itera-
tive feature selection, we identified a six-protein panel 
consisting of APOA4, APOB, CD14, PFN1, PLA2G7, 
and IGFBP2 to classifying pulmonary nodule patients 
between benign and malignant nodules. While these pro-
teins have not been directly associated with pulmonary 
nodule previously, some have been connected to lung 
cancer. APOA4 was found over expressed in the serum 
and the respiratory epithelium of atypical adenomatous 
hyperplasia patients [16]. CD14+ cells play an important 
role in tumor microenvironment, and a recent study 
shows that levels of CD14+ cells negatively correlate with 
overall survival of lung cancer patients [17], and CD14+ 
macrophages may exert a broader function in other can-
cers as well. As an actin-binding protein, profilin (PFN1) 
plays an important role in actin dynamics and has been 
reported to induce tumor metastasis in non-small cell 
lung cancer through promoting microvesicle secretion 
[18]. Regardless, PFN1 were also identified as plasma 
biomarkers for various disease ranging from infection 
disease, nervous system disorder to cardiovascular disor-
ders. [19–21]. IGFBP2 has been shown to promote cancer 
progression in multiple cancers through various signaling 
pathways downstream of insulin signaling [2–24], and its 
expression in serum is considered as a biomarker for lung 
cancer [25, 26]. Thus, these results documented in litera-
ture provide additional level of support for the protein 
markers discovered in our study.

Comparing to known protein biomarkers used in clinic 
to manage pulmonary nodule patients, the sensitivity, 
specificity, NPV and AUC of the panel of proteins dis-
covered in our study are generally improved. In a similar 
study, although protein biomarkers were combined with 
clinical information to construct an integrated classi-
fier to classify benign and malignant nodules, the AUC 
of the classifier was 0.76, only slight improvement than 
the classical model developed by Mayo Clinic using clini-
cal characteristics alone [12]. Our study only utilized 
protein biomarkers, and reached a satisfactorily AUC of 
over 0.81 in all three data sets. Nevertheless, the speci-
ficity and PPV of this model were not as good as in dis-
covery data set. To rule out the possibility of overfitting 
due to limited sample size in the discovery data set, we 
collected two additional sets of independent samples to 
validate our results. Both validation data sets resulted an 
AUC of the ROC curve close to that of the discovery data 
set, which is a better performance comparing to similar 
studies. Although the calculated NPV was not as optimal 
as previously reported studies [12, 27], when considering 

Table 2 Selected peptide feature sequences
Protein name Peptide sequence Precursor charge
APOA4 SELTQQLNALFQDK 2

APOB TSSFALNLPTLPEVK 3

CD14 AFPALTSLDLSDNPGLGER 3

IGFBP2 LEGEACGVYTPR 2

PFN1 STGGAPTFNVTVTK 2

PLA2G7 IAVIGHSFGGATVIQTLSEDQR 3
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the prevalence of pulmonary nodules into the calcula-
tion, the NPV can reach as high as nearly 1.0, but at the 
cost of low PPV (Fig. 4B). Thus, a balance is needed for 
the test under development to be clinically useful.

Distinguishing benign from malignant small pulmo-
nary nodules with an intermediate risk has been a long-
lasting clinical challenge to physicians. A balance needs 
to be reached between utilizing aggressive diagnostic 
methods to detect malignant nodule and sparing patients 

Fig. 4 Logistic regression classification of benign and malignant nodules using cohort 1 as discovery data set. (A) Principal component analysis of plasma 
samples using the 6 candidate proteins (APOA4, APOB, CD14, PFN1, PLA2G7, and IGFBP2). (B) ROC curves of a six-protein logistic regression classifier 
(APOA4, APOB, CD14, PFN1, PLA2G7, and IGFBP2) for distinguishing benign and malignant nodules. (C) Sensitivity, specificity, PPN, and NPV value distribu-
tions over the range of threshold values from 0 to 1. (D) Confusion matrix showing the classification results in cohort 1
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Fig. 5 Logistic regression classification of benign and malignant nodules using cohort 2 and cohort 3 as independent validation data sets. (A) Principal 
component analysis of plasma samples from cohort 2 using the 6 candidate proteins (APOA4, APOB, CD14, PFN1, PLA2G7, and IGFBP2). (B) Principal 
component analysis of plasma samples from cohort 3 using the 6 candidate proteins. (C) ROC curves of the six-protein logistic regression classifier for 
distinguishing benign and malignant nodules in cohort 2 and 3. (D) Confusion matrix showing the classification error in cohort 2 and 3
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Fig. 6 MRM quantification and logistic regression classification of benign and malignant nodule subjects. (A) Peptide intensity plot at the peptide level 
of feature proteins selected for logistic regression. Boxplot showing differential expression of represented peptides from six proteins between patient 
groups confirmed as either malignant (MA) or benign (BE) nodules. (B) ROC curves of the six-peptide logistic regression classifier to distinguishing benign 
and malignant nodules. (C) Confusion matrix showing the classification results of the MRM assay
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from invasive procedures for those with benign nodules. 
Improving the sensitivity and specificity of a blood-based 
non-invasive test, when applying to intermediate-risk 
patients can deliver high NPV, thus prevents patients 
from having to go through unnecessary invasive pro-
cedures. A two-year follow up study of the PANOPTIC 
test concluded that applying the non-invasive test to 
nodule patients with a pretest probability of cancer of 
< 50% resulted in a 40% reduction in invasive procedures 
accompanied by 3% misclassified malignant nodules [28]. 
A prospective observational study found that patients 
with pretest probability of cancer of < 50% tested with the 
integrated classifier were 74% less likely to undergo an 
invasive procedure [29]. Because our study is at an early 
validation phase, large number of subjects are needed for 
further study to assess the clinical utility. Based on our 
improved sensitivity and specificity, we predict that our 
6-protein panel should perform in par with the clinical 
utility offered from the PANOPTIC method.

The strength of this study lies in that two independent 
data sets were used to validate the initial study, and that 
patients from two different hospitals were recruited. 
Future development of the test can focus on dramatically 
improved NPV, which can divert nearly 60% of patients 
with benign nodule to CT surveillance. Because the test 
is non-invasive, thus avoiding invasive biopsy procedures 
and reducing patient burdens. The limitations of the 
study are the relatively small sample size. Further refine-
ment and validation of this panel of biomarker proteins 
with increased sample size is warranted.

Conclusion
Our study provides retrospective plasma proteomic pro-
files of patients diagnosed with benign and malignant 
pulmonary nodules. Our results provide new panel of 
protein biomarkers for distinguishing benign and malig-
nant pulmonary nodules that worth further development 
into clinically useful blood tests.
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