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Abstract
Background COVID19 is a pandemic that has affected millions around the world since March 2020. While many 
patients recovered completely with mild illness, many patients succumbed to various organ morbidities. This 
heterogeneity in the clinical presentation of COVID19 infection has posed a challenge to clinicians around the world. 
It is therefore crucial to identify specific organ-related morbidity for effective treatment and better patient outcomes. 
We have carried out serum-based proteomic experiments to identify protein biomarkers that can flag organ 
dysfunctions in COVID19 patients.

Methods COVID19 patients were screened and tested at various hospitals across New Delhi, India. 114 serum 
samples from these patients, with and without organ morbidities were collected and annotated based on clinical 
presentation and treatment history. Of these, 29 samples comprising of heart, lung, kidney, gastrointestinal, liver, 
and neurological morbidities were considered for the discovery phase of the experiment. Proteins were isolated, 
quantified, trypsin digested, and the peptides were subjected to liquid chromatography assisted tandem mass 
spectrometry analysis. Data analysis was carried out using Proteome Discoverer software. Fold change analysis was 
carried out on MetaboAnalyst. KEGG, Reactome, and Wiki Pathway analysis of differentially expressed proteins were 
carried out using the STRING database. Potential biomarker candidates for various organ morbidities were validated 
using ELISA.

Results 254 unique proteins were identified from all the samples with a subset of 12–31 differentially expressed 
proteins in each of the clinical phenotypes. These proteins establish complement and coagulation cascade pathways 
in the pathogenesis of the organ morbidities. Validation experiments along with their diagnostic parameters confirm 
Secreted Protein Acidic and Rich in Cysteine, Cystatin C, and Catalase as potential biomarker candidates that can flag 
cardiovascular disease, renal disease, and respiratory disease, respectively.

Conclusions Label free serum proteomics shows differential protein expression in COVID19 patients with morbidity 
as compared to those without morbidity. Identified biomarker candidates hold promise to flag organ morbidities in 
COVID19 for efficient patient care.
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Background
COVID19 is an infection caused by a novel Severe Acute 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
that first emerged in Wuhan, China, in December 2019 
[1]. WHO declared the disease a pandemic in March 
2020 [2]. The COVID19 pandemic is devastating, and 
the long-term health consequences in the post-infection 
period remain unclear in terms of clinical manifestation 
and patient management [3–5].

While SARS-CoV-2 is known to cause substantial pul-
monary diseases, including pneumonia and acute respi-
ratory distress syndrome (ARDS), However, clinicians 
have observed many extra-pulmonary manifestations of 
COVID19 with organ morbidities beyond respiratory 
system in systems such as renal, myocardial, hepatic, gas-
trointestinal, nervous, and haematological systems [3–7]. 
These types of pathologies and prolonged illness after 
post-infection are described as ‘Long COVID19’ or ‘post-
COVID19 syndrome’ [8]. Nalbandian and his group have 
made a comprehensive review on acute complicacies and 
organ-specific sequelae of COVID19 and have termed 
the post-COVID19 complicacies as ‘Post-acute COVID19 
syndrome’ [4, 5]. In the post-COVID19 period 10–45% 
of patients experience respiratory sequelae, 10–22% of 
patients experience cardiovascular sequelae, 10–31% of 
patients experience neurological sequelae, and close to 
20% of patients experience gastrointestinal sequelae [4]. 
This pattern of post-infection viral sequelae is not new 
and has been known for the SARS epidemic of 2003 and 
the Middle East respiratory syndrome (MERS) outbreak 
of 2012, where similar kinds of organotropism and per-
sistent symptoms relating to organ morbidities [9–12]. 
Using various methods many studies have demonstrated 
the presence of SARS-like viral particles in epithelial cells 
of mucosa of the small and large intestines, of the renal 
distal tubules, neurons of the brain, and macrophages in 
different organs including the liver thereby establishing 
post viral sequelae [10, 13, 14].

Organ damage presents a significant challenge for cli-
nicians when treating COVID19, as the clinical course 
can differ between patients [15, 16]. Some COVID19 
survivors did not recover even after two years after acute 
infection, thereby necessitating a follow-up [17]. An 
objective tool to accurately flag organ morbidity in these 
patients is vital to understand the prognosis and treat-
ment outcomes.

In the past years, OMICS-based technologies have 
helped to identify biomarkers candidates for diagno-
sis, prognosis, disease monitoring, disease recovery, 
and severity [18, 19]. We have recently carried out a 

repository-based proteomic analysis to delineate protein 
signatures in COVID19 related organ morbidity [20]. 
This has been encouraging enough to carry out pro-
teomic analysis in COVID19 patients that can unravel 
molecular patterns that can flag organ dysfunction. Our 
group has been actively involved in carrying out clini-
cal proteomics experiments for various health-related 
research questions relating to disease diagnosis and 
monitoring pharmacological responses in various clinical 
conditions [21–23]. We propose to carry out serum based 
proteomics to identify protein biomarkers that can flag 
various organ dysfunctions as post-COVID19 complica-
tion. The proposed study will help develop a translational 
proteomic platform to subsequently design diagnostics 
that will help clinicians to streamline COVID19 patient 
management.

Materials and methods
Clinical phenotyping and sample collection
Patients who tested PCR positive for SARS-CoV-2 were 
screened. Detailed clinical history was taken, examina-
tion was conducted, and pharmacological interventions 
were noted. Patients having single organ morbidity were 
recruited for the study, and their serum samples were col-
lected and annotated. Those with multiple organ co-mor-
bidities, having other co-existing infections or chronic 
ailments were excluded from the study. COVID19 
patients who did not have any organ morbidity served as 
controls. The study overview is shown in Fig.  1. A total 
of 114 COVID19 serum samples of 200  µl each were 
collected. All samples were inactivated by sterilizing at 
56°C for 30 min and stored at -80°C until further analysis 
[24]. While 29 samples (cardiovascular: 4, renal: 4, pul-
monary: 3, gastrointestinal: 6, neurological: 4, hepatic: 4, 
and control: 4) were taken for the discovery phase of the 
proteomic experiment, 114 (cardiovascular: 20, Renal: 
18, pulmonary: 20, gastrointestinal: 6, neurological: 13, 
hepatic: 17, and control: 20) were taken for the validation 
phase of the proteomic experiment.

Protein isolation and trypsin digestion
20 µl of serum was diluted with 80 µl of 50 mM ammo-
nium bicarbonate containing 8 M urea. The solution was 
vortexed at 1000 rpm for 5 min and sonicated for 1 min to 
achieve complete protein solubilization. Protein was esti-
mated using the Bradford assay where 2  mg/ml Bovine 
Serum Albumin (BSA) was used as calibration standard. 
100  µg of protein was taken and reduced with 10 mM 
dithiothreitol at 60  °C for 30  min, followed by alkyla-
tion with 50 mM iodoacetamide at room temperature in 
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dark for 30 min. Final solution was diluted with 50 mM 
ammonium bicarbonate to reduce the urea concentra-
tion below 1 M. Proteomic grade Trypsin (Promega) was 
added at a 1:50 (w/v) enzyme to protein ratio and incu-
bated at 37 °C for 12 to 18 h for protein digestion. Diges-
tion was quenched by adding 1% of TFA and the digested 
peptides were purified using C18 reverse phase desalting 
columns. Purified peptides were lyophilized using Speed-
Vac vacuum concentrator (Thermo Fisher Scientific, 
Rockford, USA) and reconstituted in 0.1% formic acid 
containing LC-MS grade water (loading buffer) and con-
centrations were estimated using a NanoDrop Spectro-
photometer (Thermo Fisher Scientific, Rockford, USA).

Liquid chromatography assisted mass spectrometry 
(LCMS/MS) analysis
LCMS/MS analysis was conducted on an Orbitrap 
Fusion Tribrid Mass Spectrometer coupled with an 
Easy-nLC1200 nano-flow LC system (Thermo Fisher 

Scientific, Rockford, USA). 1  µg of peptides from indi-
vidual samples were loaded onto trap column (Acclaim 
PepMap 100, 3 μm, 100 Å, 75 μm x 3 cm; Thermo Fisher 
Scientific, Rockford, USA) and then resolved in an ana-
lytical column (Acclaim Pep-Map RSLC C18, 2 μm, 100 
Å, 75  μm x 25  cm; Thermo Scientific, Rockford, USA) 
with a flow rate of 300 nL/min. Peptides were separated 
using a multi-step linear gradient of loading buffer and 
elution buffer (80% acetonitrile and 0.1% formic acid) at a 
flow rate of 300 nL/min. To elute the peptides, a 100 min 
gradient was used with a gradient composition of 5% 
elution buffer for 1 min, 8% for 10 min, 40% for 90 min, 
95% for 10 min and 5% for 2 min. The mass spectra were 
acquired using Thermo Xcalibur (v.4.1) MS acquisition 
software (Thermo Fisher Scientific, Rockford, USA). For 
the analysis in data-dependent acquisition (DDA) mode, 
each scan cycle consisted of one full-scan mass spectrum 
(R = 60  K, AGC = 5e5, max IT = 50 ms, scan range = 350–
1700  m/z) followed by 20 MS/MS events in Linear Ion 
Trap (AGC = 1e4, max IT = 35 ms). High energy collision 
dissociation (HCD) energy was set to 30%. Quadrupole 
isolation window was set to 1.2 Da and dynamic exclu-
sion was set for 40 s.

Data analysis
Raw files obtained from the Orbitrap Fusion mass 
spectrometer were analyzed in Proteome Discoverer 
(v.2.4.1.15, PD 2.4, Thermo Fisher Scientific, Rockford, 
USA). Data are available via ProteomeXchange with iden-
tifier PXD053440. Human Swiss-Prot reviewed database 
from UniProtKB (https://www.uniprot.org/) containing 
26,741 proteins was downloaded on 27th March 2023. 
Both canonical and isoform FASTA were taken. Label-
Free Quantification (LFQ) approach was used in PD 
2.4 and proteins were quantified using ‘Minora Feature 
Detector’ quantification node. Sequest algorithm was 
used to search peptides, where methionine oxidation and 
acetylation on protein N-terminus were set as variable 
modifications and Carbamido-methylation on cysteine 
was set as fixed modifications. MS1 match tolerance was 
set as 10 parts per million (ppm) and the MS2 tolerance 
was set as 0.6 Da. Searched peptides were validated using 
‘Percolator’ node applying strict and relaxed FDR thresh-
old of 0.01 and 0.05, respectively. Searched peptides were 
normalized against total peptide amount and only unique 
peptides were used for protein quantification. Proteins 
with abundance values in at least 50% of the samples 
were considered for statistical analysis. Data was further 
normalised by median-centred and log-transformed in 
MetaboAnalyst (Version 6.0;  h t t p s : / / w w w . m e t a b o a n a l y s 
t . c a     ) , and statistical significance analysis was done using 
Student’s t-test, where a p-value < 0.05 was considered for 
protein selection. Comparison of the sample groups from 
each phenotype for differential abundance of proteins 

Fig. 1 Flowchart depicting the summary of methodology and outcome 
of this study
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was done with criteria of 0.5 ≥ Fold change ≥ 2, and statis-
tical significance of p-value < 0.05. Partial Least-Squares 
Discriminant Analysis (PLS-DA) was used to analyse the 
categorization of clinical phenotypes and control groups 
based on complete protein expression.

Bioinformatics analysis
Differentially expressed genes were analysed using the 
STRING database v12 (Search Tool for the Retrieval of 
Interacting Genes/Proteins) [25]. Proteins that were 
0.67 ≥ Fold change ≥ 1.5 and statistically significant were 
taken for pathway analysis. Homo Sapiens was used as 
background species, and the enrichment analysis was run 
for Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
pathways, WikiPathways, and Reactome pathway. Results 
with FDR-adjusted p values < 0.01 were considered.

ELISA
Proteins SPARC, CST3, CLU, CAT, and DEFA1 were 
selected for the validation phase by Enzyme-Linked 
Immunosorbent Assay (ELISA). All protein concen-
trations were measured using the following commer-
cially available ELISA kits: SPARC: Human ELISA kit 
(ab220654, Abcam, Cambridge, UK), CST3: Human 
ELISA kit (ab119589, Abcam, Cambridge, UK), CLU: 
Human ELISA kit (ab174447, Abcam, Cambridge, UK), 
CAT: Human ELISA kit (ab277396, Abcam, Cambridge, 
UK), and DEFA1: Human ELISA kit (CSB-E14155h, 
CUSABIO, Houston, TX, USA). All tests were conducted 
in duplicate as per the manufacturer’s manual. ELISA 
plate readings were taken on SpectraMax i3x Multi-
mode Microplate reader. Values below limit of detection 
were excluded from the analysis. Serum concentrations 
between the COVID19 morbidity and controls were 
compared using an independent Student t-test, and val-
ues of p < 0.05 were considered significant.

Statistical analysis
MetaboAnalyst (version 6.0) was used to normalise 
the protein abundance. ELISA data was analysed using 
GraphPad Prism 8 (GraphPad Software Inc., San Diego, 
CA, USA). To assess the diagnostic accuracy of each 
candidate biomarker marker, Receiver Operating Char-
acteristic (ROC) curves of ELISA data were done in 
MetaboAnalyst (version 6.0). Area Under the Curve 
(AUC) was estimated with 95% confidence intervals. 
Optimum cut-off value was obtained at which the Yuden 
Index (sensitivity + specificity-1) was maximum. Likeli-
hood ratio values were also computed. p < 0.05 was taken 
to test the significance of the AUC.

Results
Clinical profile
A total of 114 serum samples were collected from 94 
COVID19 patients with various organ co-morbidities (64 
men; age range: 8–78 years; median age: 43 years) and 
from 20 controls who had COVID19 but no co-morbid-
ities (10 men; age range: 18–58 years; median age: 37.5 
years). Distribution of patients across different clinical 
phenotypes is given in Table  1. The predominant age 
group of patients recruited in our study was 31–60 years, 
which comprised 72% of the participants. Of these, serum 
samples of 25 COVID19 patients with organ morbidities 
and 4 controls were taken for the discovery phase of the 
proteomic experiment. Distribution of patients across 
the phenotypes is as follows: Cardiovascular: 4 patients 
(4 men; median age: 53.5 years, age range: 38–60 years), 
Pulmonary: 3 patients (1 man; median age: 41 years, age 
range: 25–56 years), Neurological: 4 patients (3 men; 
median age: 41 years, age range: 30–51 years), Renal: 4 
patients (3 men; median age: 48 years, age range: 44–57 
years), Hepatic: 4 patients (4 men; median age: 43 years, 
age range: 31–61 years), Gastrointestinal: 6 patients (0 
men; median age: 43 years, age range: 31–61 years years), 
and Control: 4 patients (2 men; median age: 43 years, age 
range: 34–57 years).

Table 1 Demography of COVID-19 patients with organ morbidity
S. No Organ system 

affected
Num-
ber of 
samples

Male: 
Female

Median age 
with Range 
(years)

Clinical presentation Phenotype

1 Cardiovascular (C) 20 16:4 50 (32–60) Myocardial infarction on anticoagulants COVID-19 with cardiovascular 
disease

2 Pulmonary (P) 20 10:10 41.5 (25–61) Breathlessness on bronchodilators COVID-19 with pulmonary disease
3 Neurological (N) 13 9:4 34 (8–66) Epilepsy / migraine / depression COVID-19 with neurological disease
4 Hepatic (L) 17 16:1 47 (18–71) Mild abdominal distention with de-

ranged Liver enzymes
COVID-19 with liver disease

5 Renal (R) 18 12:6 42 (19–78) Kidney stone / Increased levels of urea 
and creatinine

COVID-19 with renal disease

6 Gastrointestinal (G) 6 0:6 40 (35–45) Appendicitis / Gastritis COVID-19 with gastrointestinal 
disease

7 Control (Con) 20 10:10 37.5 (18–58) Fever/malaise COVID-19 with no co-morbidities
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Differential protein expression
A total of 919 proteins and 3425 peptides were identified 
from the raw files using Proteome Discoverer software. 
After applying a filter criterion for at least 2 unique pep-
tides, 254 proteins were considered for further analysis. 
PLS-DA analysis of this subset of proteins clearly estab-
lishes a clear demarcation between organ morbidity phe-
notypes and control phenotypes in COVID19 (Fig.  2). 
Scores of the first two components were represented 
showing the ovals at 95% confidence intervals. With a cri-
terion of a protein present in at least half of the biological 
replicates in each of the morbidity phenotypes, cardio-
vascular had 239 proteins, hepatic had 244 proteins, renal 
had 242 proteins, gastrointestinal had 243 proteins, neu-
rological had 240 proteins, and pulmonary had 236 pro-
teins. A two-fold differential expression with statistical 
significance criterion resulted in identification of 12–31 
candidate biomarker proteins for each of the organ mor-
bidities in COVID19. Hepatic phenotype had 15 upregu-
lated and 16 downregulated proteins, gastrointestinal 
phenotype had 17 upregulated and 11 downregulated 
proteins, cardiovascular phenotype had 10 upregulated 
and 9 downregulated proteins, pulmonary phenotype 
had 10 upregulated and 8 downregulated proteins, renal 
phenotype had 10 upregulated and 5 downregulated pro-
teins, and neurological phenotype had 4 upregulated and 
8 downregulated proteins. These are represented as vol-
cano plots in Fig. 3. Some of the differentially expressed 

proteins in the organ morbidity phenotype include: (1) 
acute phase reactants such as C-Reactive protein (CRP), 
Apolipoproteins (APOA2, APOC1, APOC2, APOC3, 
APOA5), haemopexin (HPX), and orosomucoid-2 
(ORM2); (2) Immunoglobulins (IGKV1-27, IGKV3D-15, 
IGHV3-38, IGKV1-16, IGLV3-19, IGHV2-5); (3) Com-
plement related proteins Ficolin-3 (FCN3) and, (4) coag-
ulation related proteins such as Serine protease inhibitor 
C1 (SERPIC1), Factor 12 (F12), Factor 11 (F11), Factor 13 
(F13A1), and Glycoprotein 1b α-chain   (GP1BA). There 
are three proteins consistently upregulated in all the six 
organ morbidity phenotypes. They are: Defensin Alpha 1 
(DEFA1): 27.2 fold; Lysozyme (LYZ): 10.3 fold; and Insu-
lin-Like Growth Factor Binding Protein 2 (IGFBP2): 6.1 
fold.

Pathway analysis
Functional enrichment analysis using KEGG, WikiPath-
ways, and Reactome delineated 3–36 pathways that are 
implicated in the pathogenesis of the organ morbidities 
in COVID19. Out of these, around 60% involved comple-
ment and coagulation pathways. Percentage of comple-
ment and coagulation related pathways in each group 
were: 67% in the cardiovascular system, 40% in the neu-
rological system, 86% in the renal system, 80% in the 
hepatic system, and 44% in the gastrointestinal system 
(Fig. 4). In addition, there are consistent overlaps of com-
plement and coagulation pathways that are derived from 

Fig. 2 Partial least-squares discriminant analysis (PLS-DA) based on abundance of proteins identified in each of the COVID19 biological replicates: (A) 
Control and Cardiovascular morbidity phenotype. (B) Control and Pulmonary morbidity phenotype. (C) Control and Renal morbidity phenotype. (D) 
Control and Gastrointestinal morbidity phenotype. (E) Control and Neurological morbidity phenotype. (F) Control and Hepatic morbidity phenotype

 



Page 6 of 11Rajan et al. Clinical Proteomics           (2024) 21:61 

Fig. 4 Pathway analysis of differentially expressed proteins in organ morbidity phenotypes in COVID19. (A) Control and Cardiovascular morbidity phe-
notype. (B) Control and Neurological morbidity phenotype. (C) Control and Renal morbidity phenotype. (D) Control and Gastrointestinal morbidity 
phenotype. (E) Control and Hepatic morbidity phenotype. KEGG pathways are represented in green; Reactome pathways are represented in blue; and 
Wiki pathways are represented in purple. x-axis represents the different pathways. Left y-axis represents number of proteins annotated from previous 
studies in each of the pathways and percentage corresponding (blue) to total number of input proteins is shown for the top values in the axis. Right y-axis 
represents the FDR value

 

Fig. 3 Volcano plots showing differentially expressed proteins between control and organ morbidity phenotypes in COVID19. (A) Control and Cardio-
vascular morbidity phenotype. (B) Control and Pulmonary morbidity phenotype. (C) Control and Renal morbidity phenotype. (D) Control and Gastroin-
testinal morbidity phenotype. (E) Control and Neurological morbidity phenotype. (F) Control and Hepatic morbidity phenotype. With respect to organ 
morbidity phenotypes, Red dots represent proteins with increased fold change (> 2); blue dots represent proteins with decreased fold change (< 0.5); and 
grey dots represent proteins with no significant change
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three different data bases. In the neurological system and 
gastrointestinal system, which have less than half the 
pathways accounting for complement and coagulation, 
pathways relating to lipid metabolism and transport were 
a standout feature.

Potential biomarker candidates for organ morbidity in 
COVID19
All the dysregulated proteins were screened based on 
their function and relevance to this study to identify 
potential biomarker candidates for organ morbidities in 
COVID19 (Table  2). They are: Secreted Protein Acidic 
and Rich in Cysteine (SPARC) for cardiovascular dis-
ease; Clusterin (CLU) for neurological disease; Cystatin 
C (CST3) for renal disease; and Catalase (CAT) for respi-
ratory disease. Of the three proteins that are upregulated 

in all morbidity phenotypes, Defensin Alpha 1 (DEFA1) is 
a neutrophil generated response to viral infection, while 
lysozyme and Insulin like growth factor binding protein 2 
are non-specific mediators of acute inflammation. While 
ELISA was carried out for all five potential biomarker 
candidate proteins, only SPARC, CST3, and CAT showed 
results that validated the differential expression noted in 
the discovery phase (Fig. 5). Average Coefficient of varia-
tion for SPARC, CST3, and CAT are 9.3%, 5.8%, and 8.7% 
respectively. The corresponding ROC that was plotted is 
shown in Fig. 6, and the estimated diagnostic parameters 
are listed in Table 3. Sensitivity values of 64.7 -94.0%, and 
specificity values of 75.0 − 94.4% are reasonable scores 
that reflect the usefulness of these biomarker candidates 
to flag organ morbidity in COVID19.

Table 2 Potential biomarker proteins that can flag different organ morbidities in COVID-19 patients
S. 
No

Protein Acces-
sion
No.

Organ 
system 
involved

Fold 
change

Clinical phenotypes 
in which the protein 
is present

Relevance in this study Ref

Controls Morbidity
1 SPRC_

HUMAN
P09486 Cardio-

vascular 
System

4.0 4/4 4/4 SPARC reduces cardiac inflammation and mortality by improving 
endothelial barrier function during viral myocarditis.

[39]

SPARC expression increases following myocardial injury. [41]
2 CYTC_

HUMAN
P01034 Renal 

System
44.1 3/4 4/4 CST3 is a marker for detecting changes in GFR and has high predictive 

value for COVID-19-related AKI
[45, 
46]

3 CLUS_
HUMAN

P10909 Neurologi-
cal System

-3.2 4/4 4/4 CLU is a complement cytolysis inhibitor, and protects nerve cells by 
reducing inflammation.

[42]

Low levels of CLU correlate with COVID19 severity [43]
4 CATA_

HUMAN
P04040 Pulmonary 

System
-8.7 4/4 2/3 CAT regulates production of cytokines preventing oxidative injury and 

suppressing SARS-CoV-2 replication.
[48, 
51]

protects against pulmonary fibrosis and prevents lung epithelial cells 
from hydrogen peroxide-induced apoptosis.

[56, 
57]

5 DEF1_
HUMAN

P59665 Common 
protein

27.2 2/4 25/25 DEFA1 is secreted upon neutrophil activation which is the first line of 
defence in viral infection

[54]

DEFA1 correlates with COVID-19 severity; High levels are associated 
with fatal outcomes in patients

[55]

Fig. 5 ELISA of candidate biomarker proteins. (A) SPARC. (B) Cystatin C. (C) Catalase. The Scatter plots represent the individual concentrations of all the 
samples in the group as dots. Mean of the values is indicated by horizontal lines. * indicates p < 0.05; and *** indicates p < 0.001
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Discussion
In our study, we observed that males are more commonly 
affected by COVID19 than females, which is in line with 
other COVID19-related studies [26, 27]. Presenting 
clinical features and lab tests such as myocardial isch-
emia, breathlessness, depression, deterioration in kidney 
function, elevated liver enzyme levels seen in patients 
recruited in this study are very similar to the those 
observed in previous studies [4, 28]. It may be noted that 
majority of the patients with cardiovascular disorder suf-
fered from myocardial infarction, a hyper coagulable-
thrombotic disease.

Differential protein expression shows a lot of interest-
ing outcomes. Discriminative analysis shows intra-group 
homogeneity and inter-group variability among the clus-
ters of biological replicate phenotypes. This strength-
ens the causal association between protein expression 
profiling and clinical outcomes in COVID19 patients 
recruited in our study. While the homogeneity exists 
for all the organ morbidity phenotypes in the study, it is 
more enhanced in the case of pulmonary morbidity. This 
is probably due to the fact that lungs are primary site 
of infection for SARS-CoV-2. Differentially expressed 
proteins are a cumulative effect of body response to 
SARS-CoV-2 virus. While identification of acute phase 
reactants is indicative of systemic inflammatory response 
syndrome, identification of different immunoglobulins 
is a clear indicative of the humoral response mediated 
against the viral antigens. Identification of high number 

of coagulation factors and complement factors as dys-
regulated proteins provides ample evidence of their role 
in causation across the various organ morbidities in 
COVID19.

Mapping of their respective pathways implicates 
thrombo-inflammation as one of the key pathogenic 
mechanisms in COVID19. Possible reasons for associa-
tion of ‘complement-coagulation system’ with COVID19 
are: (1) SARS-CoV-2 virus by causing endothelial dam-
age and thrombo-inflammation activating complement 
system [29]. (2) Spike protein and nucleo-capsid pro-
teins of the virus are recognised by lectin pathway lead-
ing to complement activation [30]. (3) Immunoglobulins 
directed against receptor binding domain of the spike 
protein initiates classical complement pathway [31]; virus 
attack on the immune system causes a cytokine storm 
that triggers coagulation complications [32]. (4) spike 
protein of SARS-CoV-2 by binding to heparan sulfate 
and competing with factor H disrupts alternative path-
way of complement activation [33, 34]. (5) Neutrophils 
which are major cellular component of innate immune 
system against viral infection releases various products 
including coagulants and complement factors [35]. It is 
therefore clear that ‘complement-coagulation’ activation 
in COVID19 is indeed a crucial factor in the pathogen-
esis of organ morbidity in COVID19. This is supported 
by immunofluorescence detection of complement depos-
its in the lungs, kidneys, and liver tissues of COVID19 
patients [36]. Also, COVID19-associated coagulopathy 

Table 3 Diagnostic parameters of validated proteins
Protein Cut-off values

(pg/µL of serum)
Statistical Parameters
AUC (95% CI: LL- UL) Sensitivity (%) Specificity (%) Likelihood

Ratio +
Likelihood
Ratio -

SPRC_HUMAN (Cardiac) ≥ 377.0 0.868 (0.703–0.978) 94.0 75.0 3.7 0.07
CYTC_HUMAN
(Renal)

≥ 702 0.746 (0.572–0.923) 64.7 93.8 10.3 0.4

CATA_HUMAN (Pulmonary) ≤ 35.5 0.815 (0.651–0.946) 66.7 94.4 12.0 0.35

Fig. 6 ROC of candidate biomarker proteins. (A) SPARC. (B) Cystatin C. (C) Catalase. Area under the curve (AUC) and their 95% confidence intervals (blue 
area) are depicted. Red dot indicates optimal cut-off for the best sensitivity and specificity values
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causes significant damage to multiple organs, including 
the lungs, heart, kidneys, and brain, contributing to the 
high mortality in severe COVID19 [35, 37].

It is very evident from the experiments and validation 
studies that there is a good possibility of candidate bio-
marker proteins for organ morbidity in COVID19. Some 
of these proteins and their functional roles in certain 
organ systems are discussed here. (1) Secreted Protein 
Acidic and Rich in Cysteine (SPARC) plays a significant 
role in regulating cellular interactions with the extracellu-
lar matrix (ECM) [38]. In the cardiac tissue it: (a) Reduces 
inflammation by preserving endothelial glycocalyx integ-
rity in viral myocarditis [39]; (b) in response to myocar-
dial injury, it aids in tissue regeneration [40, 41]; and (c) 
rescue myocytes that are compromised by viral infections 
[41]; (2) Clusterin is a complement cytolysis inhibitor 
which is expressed by nerve cells as a defence mechanism 
against endogenous complement attack, thereby reduc-
ing inflammation and cerebral edema [42]. Decreased 
levels of Clusterin seen in the neurological patients 
recruited in this study possibly indicates disease sever-
ity highly predictive of poor outcomes [43]. (3) Cystatin 
C is an endogenous cysteine proteinase inhibitor pro-
duced by all nucleated cells and is a sensitive marker for 
detecting changes in glomerular filtration rate (GFR) [44, 
45]. Serum Cystatin C has demonstrated a high predic-
tive value for COVID19-related Acute Kidney Injury and 
was also associated with COVID-19 severity and mor-
tality [46, 47]. (4) Catalase is an intracellular antioxidant 
enzyme present in alveolar epithelial cells that helps in 
protecting lung tissue from oxidative stress in COVID19 
[48–50]. In addition to, it is also involved in regulating 
cytokines [51]. (5) DEFA-1 is produced by the innate 
immune system and epithelial cells and mainly stored in 
neutrophilic granules [52, 53]. In response to viral infec-
tion, including COVID19, neutrophils migrate to the site 
of infection and, upon activation, release multiple mol-
ecules, including alpha-defensins such as DEFA1 [54]. 
The accumulation of neutrophils is observed in severe 
COVID19 patients compared to non-severe patients, and 
DEFA1 levels have been found to be significantly higher 
in patients with poor outcomes [55]. Excellent diagnostic 
parameters estimated for some of these proteins establish 
possible usefulness of these biomarker candidates to flag 
organ morbidities in COVID19.

Conclusions
Serum of COVID19 patients with various co-morbid-
ities exhibit differentially expressed proteins. Comple-
ment and coagulation are the main pathways implicated 
in the pathogenesis of organ morbidity in COVID19. 
Potential biomarkers that could possibly flag various 
organ morbidities in COVID19: Secreted Protein Acidic 
And Rich in Cysteine for cardiac pathology, Catalase for 

the Pulmonary pathology, and Cystatin C for the Renal 
pathology. Diagnostic values with a minimum of 65% 
sensitivity and 75% specificity offers a potential platform 
for development of diagnostics for organ morbidity in 
COVID19.
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