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Abstract 

Background  Spatial proteomics seeks to understand the spatial organization of proteins in tissues or at different 
subcellular localization in their native environment. However, capturing the spatial organization of proteins is chal-
lenging. Here, we present an innovative approach termed Spatial Proteomics through On-site Tissue-protein-labeling 
(SPOT), which combines the direct labeling of tissue proteins in situ on a slide and quantitative mass spectrometry 
for the profiling of spatially-resolved proteomics.

Materials and Methods  Efficacy of direct TMT labeling was investigated using seven types of sagittal mouse brain 
slides, including frozen tissues without staining, formalin-fixed paraffin-embedded (FFPE) tissues without staining, 
deparaffinized FFPE tissues, deparaffinized and decrosslinked FFPE tissues, and tissues with hematoxylin & eosin (H&E) 
staining, hematoxylin (H) staining, eosin (E) staining. The ability of SPOT to profile proteomes at a spatial resolution 
was further evaluated on a horizontal mouse brain slide with direct TMT labeling at eight different mouse brain 
regions. Finally, SPOT was applied to human prostate cancer tissues as well as a tissue microarray (TMA), where TMT 
tags were meticulously applied to confined regions based on the pathological annotations. After on-site direct 
tissue-protein-labeling, tissues were scraped off the slides and subject to standard TMT-based quantitative proteomics 
analysis.

Results  Tissue proteins on different types of mouse brain slides could be directly labeled with TMT tags. Moreover, 
the versatility of our direct-labeling approach extended to discerning specific mouse brain regions based on quantita-
tive outcomes. The SPOT was further applied on both frozen tissues on slides and FFPE tissues on TMAs from prostate 
cancer tissues, where a distinct proteomic profile was observed among the regions with different Gleason scores.

Conclusions  SPOT is a robust and versatile technique that allows comprehensive profiling of spatially-resolved prot-
eomics across diverse types of tissue slides to advance our understanding of intricate molecular landscapes.
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Background
The orchestra of different molecules within cells and cells 
within tissues is a crucial context for effective cellular and 
tissue functions. As the workhorses of the cells, proteins 
carry out diverse functions in different cellular or sub-
cellular locations [1]. The exclusiveness of these protein 
locations allows for multiple cellular reactions to occur in 
parallel while avoiding undesirable cross-talk. Chemical 
environments also differ in these cellular or subcellular 
locations with corresponding interactors tailored to spe-
cific protein functions [2]. Certain proteins even shuttle 
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in and out of different locations, they are called “shut-
tling proteins”, also known as multi-localized proteins [1, 
2]. Mislocation and altered dynamics of proteins could 
compromise their proper cellular functions. The altera-
tions in protein functions or locations could associated 
with diseases, such as metabolic disorders, neurodegen-
erative diseases, and cancers [3–6]. Notably, over 150 
human disorders arise from disruptions in intracellular 
protein transport [7]. Spatial proteomics offers a way to 
capture the intricate spatial distribution of proteins, and 
potentially refresh our knowledge of cellular biology and 
disease pathogenesis, thereby guiding the development of 
new diagnostic and therapeutic strategies.

Proteomics studies, up until recently, have predomi-
nantly concentrated on profiling bulk tissues or dissoci-
ated cells. However, this approach inevitably results in a 
loss of the spatial context of proteins within cells, as well 
as of cells within tissues. Spatially resolved proteomic 
methods could address this challenge, enabling pro-
teome-scale measurements while preserving spatial con-
text. Conventionally, the study of protein localization and 
function has been confined to techniques such as immu-
nofluorescence and electron microscopy, which provide 
limited information on the distribution and interac-
tion of individual proteins within cells. However, recent 
advances in proteomic technologies, such as multiplexed 
imaging techniques and mass spectrometry (MS) [8, 9] 
have enabled the comprehensive profiling of the cellular 
distribution and regulation of proteins in complex bio-
logical systems.

Multiplex imaging techniques that leverage immu-
nohistochemistry (IHC) [10], immunofluorescence (IF) 
[11–13], multiplexed ion beam imaging (MIBI) [14, 15], 
and imaging mass cytometry (IMC) [16, 17] have been 
developed for the determination of protein localization, 
visualization of protein organization, and interactions 
within tissues or cells. Currently, up to 65 antigens could 
be simultaneously detected using an iterative immuno-
labeling and chemical bleaching method [11]. Neverthe-
less, multiplex imaging techniques are highly reliant on 
the availability of suitable tagging antibodies, and the 
adoption of multiplexable signal amplification methods 
[18]. Alternatively, label-free mass spectrometry imaging 
(MSI) can directly detect the spatial distribution of mol-
ecules based on their mass-to-charge ratio (m/z) without 
the need for prior labeling with antibodies or other chem-
ical tags [19, 20]. Mainstream techniques include matrix-
assisted laser desorption/ionization (MALDI) [21–24], 
desorption electrospray ionization (DESI) [25], second-
ary ion mass spectrometry (SIMS) [26] and laser ablation 
electrospray ionization (LAESI) [27]. Despite the unlim-
ited multiplexing capabilities of label-free MSI tech-
niques, they often lack in specificity [28]. New imaging 

techniques such as MALDI-IHC [28, 29], which harness 
the specificity of antibodies or lectins conjugated with 
photocleavable mass-tags (PC-MTs), alongside the sensi-
tivity and multiplexing capabilities of mass spectrometry, 
have revolutionized the field of spatial proteomics.

Imaging techniques for spatial proteomic studies are 
superior in resolution, specificity and sensitivity, yet they 
often face limitations in proteome coverage. In contrast, 
bottom-up MS-based spatial proteomics has evolved as 
a robust approach that involves the identification and 
quantification of proteins within different subcellular 
compartments or structures. Various methods have been 
coupled with MS for spatial proteomics, immunoprecipi-
tation [30], proximity labeling [31, 32], and laser micro-
dissection (LMD) [33, 34]. Immunoprecipitation isolates 
proteins that are associated with or inside organelles via 
selective antibody purification of target proteins that are 
fused with a tag. Proximity labeling is a more recently 
developed approach. It fuses proteins, which are in close 
proximity to the “bait protein(s)”, with an enzyme that 
can catalyze the covalent labeling of nearby proteins with 
a small molecule (e.g., biotin). The labeled proteins can 
then be isolated using avidin or streptavidin affinity puri-
fication. The proteins extracted from the immunoprecipi-
tation and proximity labeling can be analyzed using MS 
to identify the interacting proteins and their subcellular 
localization. LMD coupled with MS is a widely adopted 
technique. LMD empowers researchers to meticulously 
dissect and capture specific cells or regions of interest 
within complex tissue samples while preserving their 
spatial context [35]. The isolated cells or regions subse-
quently undergo MS analysis to identify and quantify the 
proteins present within that precise spatial context [33, 
34].

In general, imaging methods preserve the native envi-
ronment but they are limited in depth, while current 
MS-based methods require spatially enriched samples 
out of their original context but excel in the deep profil-
ing of the proteomics. Therefore, we have developed Spa-
tial Proteomics through On-site Tissue-protein-labeling 
(SPOT) to achieve deep proteomic profiling of tissue 
proteins while retaining their spatial context. SPOT uti-
lizes on-site labeling of the tissue proteins and MS for 
protein quantification and identification, respectively. 
Mouse brain tissue slides were first used to demonstrate 
that SPOT can identify proteins in different cellular com-
partments. Furthermore, we extended the application 
of SPOT to frozen tissues on slides and FFPE tissues on 
TMAs from prostate cancer, where a distinct proteomic 
profile was observed among the regions with different 
Gleason scores. The result indicates that the application 
of on-site labeling with TMT in spatial proteomics has 
the potential to reveal new insights into the subcellular 
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localization and regulation of proteins in a wide range of 
biological processes, including development, disease, and 
cellular signaling.

Methods
Tissue sample collection and preparation
Mouse brain slides (7 μm) were purchased from Zyagen 
(San Diego, California. MF-201-HS for frozen slides and 
MP-201-SS for FFPE slides). Briefly, frozen mouse brain 
slides were air-dried to remove moisture and stained with 
0.1% Mayer’s hematoxylin (Sigma, MHS32) for 10  min 
in a 50  mL conical tube. Then rinse in warm running 
tap water for 15  min for the “bluing” of the slides. Fol-
lowing this, slides were then dipped in ddH2O for 30  s. 
For eosin staining, air-dried non-stained or H-stained 
slides were placed in 95% reagent alcohol (Sigma, R8382) 
for 30  s, then transferred to eosin Y alcoholic solution 
(Sigma, HT1101) for 60 s. Stained slides were dehydrated 
through 2 changes each of 95% reagent alcohol, 100% 
reagent alcohol and xylene for 2 min each. No cover slips 
were mounted.

Fresh frozen prostate cancer tissue samples were 
obtained from JHU Pathology Core/Biospecimen Bank 
with approval from the Institutional Review Board of 
Johns Hopkins Medical Institutions. A standard tissue 
collection procedure was used. Briefly, prostate cancer 
tissue specimens were immediately embedded in opti-
mal cutting temperature (OCT) compound and snap-
frozen (as tissue block) in liquid nitrogen [36]. Frozen 
tissue blocks were stored at −80 °C until further process-
ing. The Sects.  (4–5  µm) were cut using a cryostat and 
mounted onto glass slides. Fresh frozen prostate can-
cer tissue slides were stained by hematoxylin and eosin 
(H&E) following aforementioned procedure for morpho-
logical evaluations [37]. The targeted areas were identi-
fied by a pathologist.

Prostate cancer tissue microarrays (TMA) were con-
structed using FFPE tissue blocks obtained from surgi-
cally resected prostate cancer. In the TMA, representative 
cancer areas were extracted as small cores (0.6 mm), and 
then embedded into a new TMA block. 5  μm sections 
were cut from the TMA block and used for the experi-
ment [30]. To remove the paraffin from FFPE sagittal 
mouse brain slides, FFPE slides were first baked in an 
oven at 60 °C for 10 min, and soaked in xylene (10 min X 
2). The slides were then subject to serial washes of 100% 
ethanol (5 min X 1), 70% ethanol (5 min X 1), 50% etha-
nol (5 min X 1) and HPLC-grade water (5 min X 1). To 
decrosslink proteins, deparaffinized slides were incu-
bated in pH 8.0 100 mM Tris buffer at 70 °C for 20 min, 
washed with 1X PBS buffer (3 min X 1) and HPLC-grade 
water (3 min X 1), and dried with nitrogen gas in the end.

Tissue sample annotation
Mouse brain atlas was determined using available data 
archived in Allen Brain Atlas [38] as well as MRI images 
generated previously [39]. For the prostate tissue slides, 
Gleason scores of the prostate cancer were re-reviewed 
by the American Board of Pathology certified patholo-
gist, who has experience with prostate cancer. The tar-
geted areas with different Gleason scores were selected 
and marked on the H&E slides. In addition, the slides 
were assessed under the light microscope at various mag-
nifications, including low power (e.g., 4 × or 10x) for over-
all tissue architecture assessment and high power (e.g., 
20 × or 40x) for detailed cytological characterization. The 
International Society of Urological Pathologycriteria and 
guidelines for the classification of prostate cancer were 
used (ISUP [40]). In our study, all Gleason scores of 3 to 5 
were included.

Tissue sample labeling using TMT
Each TMT reagent (Thermo Scientific) vial was carefully 
opened, and the contents were gently suspended using 
the recommended volume of anhydrous acetonitrile by 
the manufacturer. The reagent was mixed thoroughly to 
ensure complete dissolution.

Suspended TMT reagents were diluted 1:5 using 
500  mM HEPES (TMT final concentration was 10  µg/
µL in 100  mM HEPES) and applied directly to areas of 
interest using the pipette. The same procedure would be 
repeated for a total of 5 times, and between each pipet-
ting, sections with labeling reagent would be left to 
air-dry. After labeling the sections of interest 5 times, 
5% hydroxylamine was applied similarly to quench the 
labeling.

Tissue lysis and digestion
Labeled tissue samples were scraped off the slides using 
a scalpel and subjected to 8  M urea lysis buffer (8  M 
urea, 75  mM NaCl, 50  mM Tris–HCl, pH8). Enzymatic 
tryptic digestion was performed as previously described 
[41]. Digested tissue samples were cleaned up by SCX tip, 
desalted by C18 StageTip, and dried using Speed-Vac.

LC–MS/MS analysis
The analytical column was manufactured in-house using 
ReproSil-Pur 120 C18-AQ 1.9  μm stationary phase (Dr. 
Maisch GmbH) and slurry packed into a 28-cm length of 
360 μm o.d. × 75 μm i.d. fused silica picofrit capillary tub-
ing (New Objective). The analytical column was heated 
to 50 °C using a column heater (Phoenix-ST). The analyt-
ical column was equilibrated to 98% Mobile Phase A (MP 
A, 3% (v/v) ACN, 0.1% (v/v) FA) and 2% Mobile Phase B 
(MP B, 90% (v/v) ACN, 0.1% (v/v) FA) and maintained at 
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a constant column flow of 200 nL/min. The sample was 
injected into a 12 μL loop placed in line with the analyti-
cal column which initiated the gradient profile (min:%MP 
B): 0:2, 1:6, 85:30, 94:60, 95:90, 100:90, 101:50, 110:50. 
The column was allowed to equilibrate at start conditions 
for 30 min between analytical runs.

MS analysis was performed using an Orbitrap Fusion 
Lumos mass spectrometer (Thermo Fisher Scientific). 
Electrospray voltage (1.8  kV) was applied at a carbon 
composite union (Valco Instruments) coupling a 360 μm 
o.d. × 20 μm i.d. fused silica extension from the LC gra-
dient pump to the analytical column and the ion trans-
fer tube was set at 250 °C. Following a 25 min delay from 
the time of sample injection, Orbitrap precursor spec-
tra (AGC 4E5) were collected from 350–1800  m/z for 
110 min at a resolution of 60 K along with data-depend-
ent Orbitrap HCD MS/MS spectra (centroid) at a resolu-
tion of 50 K (AGC 1E5) and max injection time of 105 ms 
for a total duty cycle of 2 s. Masses selected for MS/MS 
were isolated (quadrupole) at a width of 0.7 m/z and frag-
mented using a collision energy of 37%. Peptide mode 
was selected for monoisotopic precursor scan and charge 
state screening was enabled to reject unassigned 1 + , 
7 + , 8 + , and > 8 + ions with a dynamic exclusion time 
of 45  s to discriminate against previously analyzed ions 
between ± 10 ppm.

Database search and data analysis
All raw files were processed through MS-PyCloud [42] 
that were converted into mzML and searched against 
Mus musculus (for mouse brain data) and Homo sapi-
ens (for prostate cancer data) protein sequences down-
loaded from UniProt/Swiss-Prot via MS-GF + using the 
following settings: fixed modification of carbamidome-
thyl at cysteine, dynamic modifications of oxidation at 
methionine and TMT at lysine and protein N-terminus, 
precursor mass tolerance of 20 ppm, miss cleavages ≤ 2, 
instrument ID of “High-res LTQ,” and fragmenta-
tion method of HCD. A false discovery rate of 1% at 
the PSM level, a minimum of 1 PSM per peptide, and a 
minimum of 1 peptide per protein were required. MS-
PyCloud search results can be found in Table S1-S3 in the 
supplementary.

Protein abundances were calculated by summing up 
the abundances of peptides belonging to the same pro-
tein. Median normalization was carried out for each 
TMT channel. Proteins with over 50% missing values 
were omitted. For differential analysis, median-normal-
ized datasets were further log2 transformed. Pair-wise 
comparisons were conducted using the Wilcoxon ranked 
sum test, and proteins with a p-value less than 0.05 and 
an absolute fold-change greater than 2 were considered 
significantly differentially expressed.

Identified differentially expressed proteins from the 
prostate datasets were matched to the normal prostate 
proteome (126 genes enriched in prostate, Human Pro-
teome Atlas [2, 43]), prostate cancer proteome (134 genes 
related to poor prostate cancer prognosis, Human Pro-
teome Atlas [2, 43]), and cell markers in the prostate (199 
genes, Cell Marker 2.0) [44].

Results
Design of SPOT
SPOT is designed to provide quantitative deep profiling 
of spatially-resolved proteomics by direct TMT labe-
ling tissue proteins on slides (Fig.  1). Isobaric labeling 
with TMT is used as a proof-of-principle study, TMT 
is a well-established robust system [45] for multiplex, 
relative protein quantitation of up to 18 samples. TMT 
binds to primary amines (N-terminal and epsilon amino 
group of lysine residues) in proteins/peptides using NHS 
chemistry [46]. Particularly, in protein labeling, TMT can 
be conjugated to accessible lysine residues and the pro-
tein N-terminus. SPOT utilizes TMT for the controlled 
labeling of proteins spatially distributed on a 2D-tissue 
slide. Subsequently, the entire tissue section would be 
harvested and subject to standard proteomic analysis 
workflow.

TMT labeling at the protein‑level on different tissue slides.
The efficacy of direct TMT labeling at the protein-level 
was evaluated across various slide types, including frozen 
tissues without staining, FFPE without staining, depar-
affinized FFPE, deparaffinized and decrosslinked FFPE, 
and tissues with H&E staining, H staining, E staining. A 
mixture of 18 TMT tags was directly applied to the tis-
sue sections, a pipette was used in this study as the initial 
applicator for tissue labeling. Subsequently, the entire tis-
sue slide was scraped off, lysed, digested, and cleaned up 
using SCX followed by C18 STAGE tips and MS analysis. 
Upon completion of MS data generation, the raw data of 
each slide was searched and evaluated based on the iden-
tifications at PSM, peptide, and protein levels, as detailed 
in Table S4.

In general, tissue proteins on various types of slides 
could be labeled with TMT, with varying degrees of 
labeled protein percentages. Across all types of tissue 
slides, only 10% or less of the total PSMs were identi-
fied to have TMT tags at the protein N-termini. Consist-
ency could be observed for the identifications at PSM, 
peptide, and protein levels between the two repeats 
of the same tissue slide type (Table  S4). Frozen sagit-
tal mouse brain slides served as a reference for assess-
ing labeling efficiency, given that minimal treatment was 
applied to frozen slides. In comparison to frozen slides, 
where TMT labels were found on over 92% of proteins, 
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a visible  decrease in the percentage of labeled proteins 
could be observed in untreated, deparaffinized, and 
deparaffinized/decrosslinked slides (Fig.  2A). Remark-
ably, the labeling of proteins (~ 64%) is minimally affected 
by the presence of paraffin compared to the depar-
affinized ones (~ 70%), supposedly attributable to the 

permeability of acetonitrile through the paraffin. Paraffin-
coated surface also has low surface energy (high contact 
angle over 100°) [47], which limits the lateral spreading of 
the TMT solution. An adept control of TMT dot size is 
critical in ensuring precise and reproducible labeling effi-
ciency in more precise settings such as labeling on tissue 

Fig. 1  Overview of the SPOT workflow. Tissue slides are first annotated by cell types, histological patterns, or pathological states, followed 
by applying TMT tags directly onto regions of interest. After on-slide labeling and quenching of TMT, the tissue would be lysed, digested, 
and cleaned up for the downstream proteomic analysis using a mass spectrometer
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microarray (TMA) slides (coring size ~ 0.6 mm). In addi-
tion, the decrosslinking step also improved the labeling 
efficiency by ~ 8%.

Next, the effects of histology staining on direct tissue 
protein labeling were also evaluated (Fig.  2B). Notably, 
TMT tags were identified on over 92% of proteins from 
H-stained tissue slides. H&E stained (88%) and E-stained 
(84%) tissue slides showed a slightly lower percentage of 
labeled proteins compared to frozen and H-stained, how-
ever, the difference was less than 10%. During the H&E 
staining procedure, haemalum (oxidized hematoxylin 
solution) attaches to cell nuclei through covalent bonds 
between DNA phosphate oxygens and aluminum atoms, 
as well as between aluminum atoms and haemalum mol-
ecules. This covalent interaction between DNA and hae-
malum might release certain proteins bound to DNA, 
potentially elucidating the observed increase in protein 
identification with H-staining only. In contrast, eosin is 
attracted to tissue proteins by ionic forces (van der Waals 
forces) [48], and it could form salts with basic compounds 
like proteins. In turn, the presence of eosin could take up 
some of the binding capacity of SCX and C18 materials 

due to the hydrophobic interactions, providing a plausi-
ble explanation for the observed decrease in labeled pro-
tein percentage in H&E and E-stained slides.

On‑site labeling of proteins from different brain regions 
on mouse brain slide
Following the successful validation of direct labeling of 
tissue proteins on slides, we further evaluated SPOT’s 
ability to detect proteomic patterns within a spatial 
context. A horizontal mouse brain slide with eight dif-
ferent regions was clearly outlined and each region 
was “stained” with a different TMT tag as illustrated in 
Fig.  3A. To enhance the visual recognition of the brain 
regions, the horizontal mouse brain slide was first stained 
with hematoxylin only, since hematoxylin did not inter-
fere with the direct TMT labeling of tissue proteins 
(Fig. 2).

The mouse brain tissue was prepared similarly for 
downstream quantitative proteomics evaluation. Each 
region displayed a distinctive protein expression pat-
tern and eight protein clusters were established using 
a soft clustering algorithm [50] (Fig.  3B, Figure S1, and 

Fig. 2  Total identified proteins from each type of sagittal mouse brain slide. A Protein identifications of frozen, untreated FFPE, deparaffinized FFPE, 
and deparaffinized/decrosslinked slides (all were unstained). B Protein identifications of frozen, H&E stained, H stained, and E stained slides
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Fig. 3  A Mouse brain slide in horizontal view. Eight different regions are color-coded as shown and a scale bar to show the size of the brain slide. 
The scanning image was augmented using the filter “Hematoxylin” and brain regions were marked using QuPath52 [49]. B Hierarchical clustering 
illustrating the proteomic quantification results across 8 brain regions. Protein expressions could be clustered into 8 clusters, each revealing 
a distinctive spatial trend displayed on the left side of the heatmap
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Table  S5). Among the eight clusters, cluster 4 (C4) and 
cluster 6 (C6) had obvious upward and downward protein 
expression trends starting from the neocortex to the cer-
ebellum, respectively (Figs. 3B and S1). Excitatory amino 
acid transporter 1 (Eaa1), a glutamate transporter local-
ized in the brain, was identified from C4 with the high-
est abundance in the cerebellum compared to the other 
regions, correlated well with a previous study showing 
that Eaa1 was highly enriched in the Purkinje cell layer 
in cerebellum [51]. On the other hand, elevated protein 
expression of V-type proton ATPase subunit a1 (Vpp1) 
in the neocortex was observed in C6. Vpp1 is reported 
to be predominantly expressed in neurons in the cortex 
and the dentate gyrus, part of the hippocampus. It can be 
found at low levels in astrocytes, oligodendrocytes, and 
microglia [52].

The results demonstrate that SPOT effectively detected 
proteomic patterns directly from tissue protein labe-
ling indicating that SPOT is useful in studying spatial 
proteomics.

On‑site labeling of different Gleason score regions 
on the frozen slide and TMA slide
Prostate cancer frozen slide
To further test the on-site labeling on frozen tissue slides 
in discerning smaller regions of interest, an experienced 
pathologist annotated 4 regions of 0.6  mm in diam-
eter within normal sections, Gleason score 3 sections, 
Gleason score 4 sections, and Gleason score 5 sections, 
respectively (Figs. 4A). Based on the pathological anno-
tations on the adjacent H&E slides, direct TMT labeling 
was carried out on the frozen slides.

In total, 11,214 peptides were identified, correspond-
ing to a set of 1,854 unique proteins. Within this dataset, 
1,365 peptides were successfully labeled with TMT tags, 
corresponding to 289 distinct proteins. Following this 
identification, hierarchical clustering and principal com-
ponent analysis (PCA) and hierarchical clustering were 
conducted to examine the association among different 
Gleason score regions based on their protein expression 
profiles (Fig.  4A, B). Notably, normal regions and Glea-
son4 regions could be separated completely, whereas 
Gleason 3 and Gleason 5 regions had a considerable 
overlap. Regions characterized by normal or the same 
Gleason score (ranging from Gleason 3 to 5) displayed 

notably high correlations across diverse tissue sections 
(Figure S2A). Conversely, regions associated with differ-
ent Gleason scores exhibited relatively lower degrees of 
correlation.

Furthermore, differential analysis (Fig. 4D) was able to 
return two proteins specifically enriched in the prostate 
tissue (Human Proteome Atlas [2, 43]), two proteins that 
were found to relate to poor prognosis of prostate can-
cer (Human Proteome Atlas [2, 43]), and three proteins 
related to cell markers in the prostate (Cell Marker 2.0) 
[44]. Previous studies have indicated notable clinical rele-
vance associated with microseminoprotein-beta (MSMB) 
[53] and epithelial cell adhesion molecule (EPCAM) [54, 
55] for prostate cancer. In this study, MSMB was found to 
be overexpressed in Gleason 3 regions relative to normal 
regions, while EPCAM was found to be elevated in both 
Gleason 3 and Gleason 5 regions, but higher fold change 
was observed in Gleason 3 compared to normal (log2 
fold change = 1.75) than Gleason 5 compared to Gleason 
4 (log2 fold change = 1.08) (Fig. 4D). MSMB and EPCAM 
could be prostate cancer-relevant indicators or contrib-
utors in various medical and pathological conditions, 
underscoring the importance of further exploration and 
validation.

In summary, these results indicate that SPOT could 
capture potential correlations and variations in molecular 
profiles across different Gleason scores from frozen tis-
sue slides even with direct TMT labeling of proteins in 
the 0.6 mm region.

Prostate cancer TMA slide
Following the application of TMT direct labeling onto 
frozen tissue slides derived from prostate cancer speci-
mens, there arises a distinct interest in evaluating the 
translatability and consistency of this labeling method-
ology when extended to TMA slides. TMA cores were 
meticulously assessed by an experienced pathologist who 
assigned distinct scores to each core, based on the H&E 
stained adjacent slide (Fig. 5A). Eighteen cores of the size 
0.6 mm were selected for TMT direct labeling (three for 
normal, five for Gleason score 3, five for Gleason score 4, 
and five for Gleason score 5).

The TMA format involves the systematic arrange-
ment of discrete tissue cores, evenly spaced across the 
slide, providing a representative sampling of various 

(See figure on next page.)
Fig. 4  On-site TMT labeled frozen prostate cancer tissue slide. A Bright-field scanning of the adjacent prostate cancer H&E slide annotated 
with normal (yellow), Gleason 3 (cyan), Gleason 4 (blue), and Gleason 5 (purple) regions. B Principal component analysis of Gleason score regions 
based on the protein expression profiles. C Hierarchical clustering based on the expression profiles of 289 proteins across different Gleason score 
regions. D Significantly changed proteins (absolute log2 fold change > 1, p-value < 0.05) from pairwise comparison of two different Gleason score 
regions
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Fig. 4  (See legend on previous page.)
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specimens. Importantly, the deliberate spacing of these 
cores minimizes the risk of label mixing between differ-
ent regions, ensuring a more accurate and region-specific 
evaluation of the TMT labeling method within the TMA 
framework. This comparative analysis aims to contribute 
valuable insights into the method’s adaptability and reli-
ability across different tissue slide formats, advancing our 
understanding of its applicability in broader histological 
contexts.

In total, 1,873 peptides (corresponding to 560 unique 
proteins) were identified, out of which 790 were TMT-
labeled peptide sequences. These labeled peptides cor-
responded to 265 distinct proteins. Principal component 
analysis revealed minimal to no overlaps between each 
group (Fig.  5B), indicating distinct clustering patterns. 
The subsequent hierarchical clustering analysis (Fig. 5C) 
provided additional insight, revealing varying degrees 
of mixing between each group. This observation implies 
nuanced relationships and molecular heterogeneity 
within the regions characterized by different Gleason 
patterns.

Furthermore, the TMA dataset identified four proteins 
(PTMA, PPAP, POSTN, AGR2) that exhibited poten-
tial in distinguishing different Gleason score regions 
(Gleason score 3, 4, and 5). Additionally, one cell marker 
protein (MYH11) demonstrated the capability to dif-
ferentiate normal regions from different Gleason score 
regions (Fig. 5C), a finding consistent with observations 
in the frozen dataset. These proteins identified in the 
TMA dataset, particularly the four proteins demonstrat-
ing variations among different Gleason score regions, 
suggest their potential for clinical applications in prostate 
cancer detection. Their implications in prostate cancer, 
as reported in previous studies [56–64], further under-
score the significance of these proteins in the context of 
prostate cancer pathology. Understanding the molecular 
basis of Gleason patterns through these proteins could 
enhance the precision of prostate cancer grading. In 
addition, the cell marker protein capable of distinguish-
ing normal from cancerous regions holds diagnostic 
potential and may serve as a valuable tool for clinicians 
in accurately identifying cancerous areas within the 
prostate.

Based on the correlation analysis result (Figure S2B), 
a pronounced association could be observed within 

normal cores as well as within Gleason score 3 cores. This 
strong correlation suggests a potential consistency  in 
molecular characteristics within normal tissues  and 
within  low-grade prostate cancer. In contrast, the cor-
relations observed among Gleason score 4 and Gleason 
score 5 cores exhibit greater variability, suggesting poten-
tial differences in tumor heterogeneity. The varied cor-
relations observed in the higher-grade cores suggest the 
intricate nature of prostate tumor heterogeneity [56, 65]. 
This complexity arises from differences in the types and 
arrangements of cells, which can influence unique molec-
ular characteristics within the tumor.

Discussion and future directions
This study demonstrates a new approach, SPOT, for stud-
ying spatial proteomics quantitatively via direct labeling 
on tissue slides coupled with bottom-up MS. We were 
able to characterize different mouse brain regions as well 
as regions of different pathological states of prostate can-
cer directly from tissue slides of various forms by using 
SPOT. While these results are promising, further valida-
tion and optimization are necessary to fully exploit the 
potential of TMT labels for tissue slide analysis.

Applying labels directly onto tissue slides offers several 
advantages, including the ability to multiplex and analyze 
multiple samples in depth simultaneously, providing a 
comprehensive understanding of the tissue’s molecular 
landscape. Applying TMT directly onto proteins can pre-
sent certain challenges. For instance, TMT can obstruct 
trypsin cleavage at lysine residues, resulting in longer 
peptides. To mitigate the effects from TMT protein-level 
labeling, utilization of alternative proteases may improve 
identification rate and coverage. Labeling at protein-level 
also grants us limited access to labeling sites, unlike pep-
tide-level labeling, where TMT can easily target lysine 
residues and N-terminal sites. A peptide-level SPOT 
approach could overcome this limitation by applying a 
protease before TMT labeling. Additionally, SPOT was 
only applied to regions of interest, leaving most of the tis-
sue slice unlabeled. We could improve the labeling effi-
ciency by labeling the areas of interest with specific TMT 
channels in  situ, then collecting the tissue and further 
labeling the samples with a different TMT tag in solution. 
Nonetheless, SPOT enables labeling the protein in its 

Fig. 5  On-site TMT labeled prostate cancer TMA slide with paraffin. A Bright-field scanning image of selected cores from the adjacent H&E TMA of 
prostate cancer. Three normal cores, five Gleason score 3 cores, five Gleason score 4 cores and five Gleason score 5 cores were represented. B PCA 
analysis based on the protein expression profiles in different Gleason score regions. C Hierarchical clustering using the expression profiles of 265 
proteins across different Gleason score regions. D Significantly changed proteins (absolute log2 fold change > 1, p-value < 0.05) from pairwise 
comparison of two different Gleason score cores

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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original context, enhancing the accuracy and relevance of 
the analysis.

As demonstrated using mouse brain and prostate can-
cer tissue slides, quantitatively profiling spatially distrib-
uted proteomes was achieved using SPOT. In the case of 
prostate cancer, the inherent heterogeneity of prostate 
tumors, characterized by diverse cellular populations 
and architectural patterns, poses a challenge for conven-
tional Gleason scoring. While Gleason scoring remains 
a cornerstone in prostate cancer pathology, its limita-
tions in fully capturing the intricacies of heterogeneous 
tumors are acknowledged. Ongoing research endeav-
ors are dedicated to refining grading systems [66], par-
ticularly for tumors displaying mixed patterns, or using 
artificial intelligence-aided diagnosis [67, 68]. Our tech-
nology SPOT offers a viable solution for multiplexed 
spatial profiling using bottom-up proteomics and has 
the potential to unveil the complexities of prostate can-
cer heterogeneity. However, the current resolution of 
SPOT is insufficient to capture localized heterogeneity at 
the single-cell level. To address this limitation, exploring 
robust tissue labeling methods that offer enhanced pre-
cision and reproducibility is undoubtedly the next step. 
Techniques such as machine learning-assisted imaging 
processing and automated robotic arms equipped with 
high-precision imaging systems that can perform pre-
cise tissue manipulation and labeling may be considered. 
Future studies should also involve a larger sample size 
and include a broader range of pathological states to vali-
date the observed differences and confirm the specificity 
and clinical utilities of the identified proteins.

Besides quantitatively profiling spatially distributed 
proteomes, we envision utilizing SPOT for the identifi-
cation of protein–protein interactions and interactions 
with other binding partners (such as DNA, RNA, and 
metabolite) within specific subcellular compartments. 
Perturbations in the cellular microenvironment could 
induce alterations in the natural patterns of these inter-
actions [69]. Such changes may arise as a consequence 
of environmental stressors or disease conditions, influ-
encing the intricate network of interactions that govern 
cellular responses and functions. Identification of pro-
tein-binding partners at a spatial resolution is instrumen-
tal in deciphering not only the functionality of individual 
proteins but also the intricate protein pathways involved 
in biological and pathological processes.

In addition, the integration of spatial proteomics data 
with other omics data, such as genomics, transcriptom-
ics, and metabolomics, can provide a comprehensive 
understanding of cellular processes and disease mecha-
nisms. For example, the integration of spatial proteom-
ics data with transcriptomics data can provide insight 
into the regulation of protein localization and expression, 

while the integration of spatial proteomics data with 
metabolomics data can provide insight into the func-
tional consequences of alterations in protein localiza-
tion or expression. As spatial transcriptomics advances 
towards unraveling the spatiotemporal intricacies of gene 
regulation [70], a similar perspective could be applied to 
spatial proteomics. In contrast to spatiotemporal tran-
scriptomics, spatiotemporal proteomics has the potential 
to directly reveal the consequences of gene expression 
alterations across both spatial and temporal dimensions.

Conclusions
SPOT reduces the complexity and time required for sam-
ple preparation, enabling high-throughput analysis of 
tissue samples more efficiently. SPOT provides a holistic 
view of the tissue proteome by capturing the proteomic 
profiles of entire tissue regions rather than isolated cell 
populations. This is advantageous for studying complex 
tissue interactions, and spatial relationships, and identi-
fying global proteomic changes associated with patholog-
ical states, also advantageous in terms of sensitivity and 
dynamic range.

In conclusion, our study highlights the tremendous 
potential of utilizing SPOT for the in-depth investigation 
of the spatial distribution of the proteomes within biolog-
ical and pathological contexts. Tissue slide analysis based 
on SPOT technology holds great promise for enhancing 
disease diagnosis, personalized medicine, and the devel-
opment of targeted therapeutic strategies.
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