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Abstract

Glioblastoma is one of the most malignant primary brain cancer. Despite surgical resection with modern technol-
ogy followed by chemo-radiation therapy with temozolomide, resistance to the treatment and recurrence is com-
mon due to its aggressive and infiltrating nature of the tumor with high proliferation index. The median survival time
of the patients with glioblastomas is less than 15 months. Till now there has been no report of molecular target spe-
cific for glioblastomas. Early diagnosis and development of molecular target specific for glioblastomas are essential
for longer survival of the patients with glioblastomas. Development of biomarkers specific for glioblastomas is most
important for early diagnosis, estimation of the prognosis, and molecular target therapy of glioblastomas. To that end,
in this study, we have conducted a comprehensive proteome study using primary cells and tissues from patients
with glioblastoma. In the discovery stage, we have identified 7429 glioblastoma-specific proteins, where 476 proteins
were quantitated using Tandem Mass Tag (TMT) method; 228 and 248 proteins showed up and down-regulated
pattern, respectively. In the validation stage (20 selected target proteins), we developed quantitative targeted
method (MRM: Multiple reaction monitoring) using stable isotope standards (SIS) peptide. In this study, five proteins
(CCT3, PCMT1, TKT, TOMM34, UBAT) showed the significantly different protein levels (t-test: p value <0.05, AUC>0.7)
between control and cancer groups and the result of multiplex assay using logistic regression showed the 5-marker
panel showed better sensitivity (0.80 and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94
and 0.98) than the best single marker (TOMM34) in primary cells and tissues, respectively. Although we acknowledge
that the model requires further validation in a large sample size, the 5 protein marker panel can be used as baseline
data for the discovery of novel biomarkers of the glioblastoma.
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For the discovery of multi-diagnostic biomarker, we have conducted a comprehensive proteome study using primary
cells from patients with glioblastoma. In this study, 7429 glioblastoma-specific proteins were identified and then 20
selected target proteins were verified using MRM method. Finally, five proteins (CCT3, PCMT1, TKT, TOMM34, UBAT)
showed the significantly different protein levels (t-test: p value <0.05, AUC>0.7) between control and cancer groups
and the result of multiplex assay using logistic regression showed the 5-marker panel showed better sensitivity (0.80
and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 and 0.98) than the best single marker

(TOMM34) in primary cells and tissues, respectively.
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Introduction

Glioma is the most common primary cancer of the cen-
tral nervous system, which is developed from glial cells
and is generally classified into three subtypes such as
Astrocytomas, Ependymomas, Oligodendrogliomas
based on the type of glial cell involved in the tumor, as
well as the tumor’s genetic features [1, 2]. According to
WHO guidelines (WHO 2016), glioma is classified into
four grades (I-IV) and the most lethal grade is grade IV,
glioblastoma multiforme (GBM) [2]; The incidence rate
in the United States is 3.20 per 100,000 population [3],
and GBM accounts for 60—70% of malignant gliomas [4].
GBM has only few patients reaching long- term survivor
status and the median survival is 14.6 month and only
2.2% of patients are estimated to survive 3 years or more
(5, 6].

The standard of care for GBM patients is surgical resec-
tion followed by adjuvant radiation therapy and chemo-
therapy with the temozolomide [5, 7]. Surgery provides
ability to reduce the amount of solid tumor tissue within
the brain and remove cells in the center of the tumor
that may be resistant to radiation or chemotherapy.
But Conventional therapies, have not resulted in major
improvements in the survival outcomes of patients with
glioblastoma [8-11].

The current diagnosis of the glioma is performed using
the imaging techniques such as MRI [8, 9] or CT [10]
and tissue biopsies [11]. These have some of limitations
including the lack of accuracy of tumor position on brain
and the difficulty of acquiring biopsies [12, 13]. For these
reasons, glioma is harder to be diagnosed on early stage
[14, 15]. The most of glioma patients have had a surgery
followed by radiation therapy and chemotherapy, but it
has not always shown excellent therapeutic effect. There-
fore, discovering of early diagnosis and prognosis mark-
ers is very important for determination of appropriate
treatment [16—-19].

There have been many studies about analysis of correla-
tion between GBM characteristics and specific molecular
abnormalities for the past years [20]. Some cases showed
the advancement in the pathogenic characterization of

this disease [21-25]. So we need to better understand of
which molecules are involved in disease manifestation
and progression. In the past decade, differential prot-
eomic profiling techniques have utilized tissue [22, 23],
cerebrospinal fluid [23], and plasma [23-25] from glioma
patients to identify the diagnostic, prognostic, predictive,
and therapeutic response marker candidates, highlight-
ing the potential for glioma biomarker discovery. The
number of markers identified, however, have been lim-
ited, their reproducibility between studies is unclear, and
none have been validated for clinical use [12].

Primary cell lines have been the historical standard
both for the exploring the biology of human tumors in
the preclinical models and for screening potential multi
biomarker [26]. Primary cell lines reflect the tissue
microenvironment, and it has no contamination unlike
tissue [27]. Therefore, study of primary cell is that more
can be effective approach to discovery of diagnostic and
prognostic marker in the glioma than tissue.

In this study, we have performed comprehensive pro-
teome analysis using the tandem mass tag (TMT) and
targeted MS technique in the glioma patient-derived
cell, glioma primary cell. We first applied integrated pro-
teomic strategies to increase the depth of the primary
cell proteome. Next, to validate the proteome expres-
sion using the MRM-MS method in primary cell with
individual patients. Finally, to develop a multiplex assay,
a multimarker panel was established, based on candidate
variables in individual primary cells.

Materials and methods

Human surgical tissue samples and cell line

All fresh surgically resected tissue was diagnosed with
glioblastoma according to WHO classification. Pri-
mary cells of human glioblastoma and astrocytes were
obtained from brain tissue of the Brain Bank of Seoul
National University Hospital. The mean age of con-
trols and patients was 47.7 (31 ~68) and 56.28 (40 ~72),
respectively (Additional file 1: Table S1). This study
was approved by the Institutional Review Board (IRB)
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of Seoul National University Hospital (IRB approval
H-0507-509-153).

Cell culture and culture maintenance

Two cell lines were enzymatically dissociated to single
cell from mechanically dissected glioblastoma and tem-
poral lobe tissues. The cells were cultured in DMEM
media (Welgene, Korea) supplemented with 10% fetal
bovine serum (FBS; Gibco Invitrogen, USA), 100 U/mL
of penicillin, and 100 mg/mL of streptomycin (Gibco Inv-
itrogen) at 37 °C in an atmosphere of 5% CO, in air. The
cells were prepared from early passage less than 20 times
and stocked (within 2 months) Additional file 2: Fig. S1).

Protein digestion and TMT labeling

The cell pellets were prepared from control (5 samples)
and cancer (5 samples) primary cells. They were collected
in 15 mL falcon tubes, stored at — 80 °C until cell lysis
was performed. Pellets were resuspended in lysis buffer;
8 M Urea, 10X Protease inhibitor (cOmplete Protease
Inhibitor Cocktail, Roche, Basel, Switzerland), 10 X Phos-
phatase inhibitor (phosSTOP, Roche, Basel, Switzerland)
homogenized with a probe-type sonication (Marshall Sci-
entific, Hampton, United States, 2 s 2 cycles 15% power)
at 4 °C. The supernatants were move to new tube and
measured protein concentration with BCA Protein assay
(Pierce, Rockford, IL). Each 40 pg of proteins sample
was reduced with 10 mM dithiothreitol (Sigma-Aldrich,
St. Louis, Missouri, USA) and incubated for 30 min at
56 °C, followed by alkylation with 20 mM iodoacetamide
(Sigma-Aldrich) and incubated for 30 min at dark room
temperature. Trypsin-LysC (Promega, Madison, Wis-
consin, United States) was added at a protein-to-enzyme
ratio of 50:1 and samples were incubated overnight at
37 °C. For desalting, the enzymatic samples were clean-
up using HLB oasis cartridge (Waters, Milford, Messa-
chusetts, United States). The digests of the five cell lysates
resuspended in 0.1 M TEAB (TEAB, sigma Aldrich, St.
Louis, Missouri, United States) were labeled with five
different Tandem Mass Tag (TMT, Thermo Scientific,
Waltham, mesachusetts, United States) in anhydrous
ACN according to manufacturer’s instructions. TMT
labeled the five samples were collected in one tube and
dried in vacuum.

Mid pH reversed phase fractionation

TMT labeled peptides were subjected to mid-pH frac-
tionation. Dried sample was reconstituted in 10 mM
TEAB and loaded onto Agilent 1260 HPLC System (Agi-
lent, Palo Alto, CA) equipped with fraction collector
(set at 4 °C for all samples) coupled with a 4.6 X250 mm
XBridge C18 column (5 pm, 4.6 X 250 mm; Waters) with
a flow rate of 0.4 mL/min. 10 mM TEAB pH 7.5 (Sol A)
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and 10 mM TEAB pH 7.5 in 90% ACN (Sol B) were used.
Peptides were eluted with a gradient Sol B and collected
into 96 well plate during 100 min. The separated samples
were combined to 12 fractions and subsequently dried in
speed vac. Peptides were recontituted in 0.1% formic acid
water to analyze by LC-MS/MS.

Protein identification by Q-Exactive analysis

For both identification and relative quantitation of GBM
proteome, we were used Q-Exactive mass spectrom-
etry coupled with an Easy-nLC 1000 (Thermo Fisher
Scientific, San Jose, CA, USA). The extracted peptides
were reconstituted in 0.1% formic acid and separated
on EASY-Spray column (C18, 2 um particle size, 75 pm
X 500 mm). Samples were eluted from analytical column
with a linear gradient of solvent B (100% ACN, 0.1% for-
mic acid); 5-40% over 110 min, 40—80% over 7 min at a
flow rate of 300 nL/min. The separated ions were moved
into the mass spectrometer at an electrospray voltage
of 2.1 kV. All MS/MS spectra were obtained in a data-
dependent mode for fragmentation of the twenty most
abundant peaks from the full MS scan with 32% normal-
ized collision energy. The dynamic exclusion time was set
at 30 s and the isolation window was 1.2 m/z. MS spectra
were acquired with a mass range of 350—2000 m/z and
70,000 resolution at m/z 200. MS/MS resolution was
acquired at a resolution of 17,500.

Database searches and TMT labeled quantitation

Database searches (SEQUEST and X! Tandem) were
performed using Proteome Discoverer (Thermo Fis-
cher Scientific, ver 2.2.0.388) and Scaffold (version Scaf-
fold_4.10.0, Proteome Software Inc., Portland, OR).
Sequest and X! Tandem was set up to search a protein
database, the uniprot-proteome_HomoSapiens_73099_
FASTA. It was set by a fragment ion mass tolerance of
0.02 Da and a parent ion tolerance of 10.0 PPM. Carba-
midomethyl of cysteine and TMT6 plex of lysine were
specified in Sequest and X! Tandem as fixed modifica-
tions. Glu— > pyro-Glu of the n-terminus, ammonia-loss
of the n-terminus, gln—>pyro-Glu of the n-terminus,
oxidation of methionine and acetyl of the n-terminus
were specified in X! Tandem as variable modifications.
Oxidation of methionine and acetyl of the n-terminus
were specified in Sequest as variable modifications. The
Scaffold software (version 4.10.0, Proteome Software
Inc., Portland, OR, USA) was used to validate MS/MS
based peptide and protein identifications. Peptide iden-
tifications were accepted if they could be established at
greater than 99.0% probability by the Scaffold Local FDR
algorithm. Protein identifications were accepted if they
could be established at greater than 5.0% probability to
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achieve an FDR less than 5.0% and contained at least 1
identified peptide.

Scaffold Q+ (version 4.10.0) was used to quantitate
Label Based Quantitation (TMT) peptide and protein
identifications. Peptide identifications were accepted
if they could be established at greater than 95.0% prob-
ability by the Scaffold Local FDR algorithm. Protein iden-
tifications were accepted if they could be established at
greater than 5.0% probability to achieve an FDR less than
5.0% and contained at least 2 identified peptides. Pro-
tein probabilities were assigned by the Protein Prophet
algorithm [28]. Proteins that contained similar peptides
and could not be differentiated based on MS/MS analy-
sis alone were grouped to satisfy the principles of par-
simony. Proteins sharing significant peptide evidence
were grouped into clusters. Of 395,679 spectra in the
experiment at the given thresholds, 227,281 (57%) were
included in quantitation. The normalized TMT signals
were further analyzed by Perseus for statistical analysis.
For each TMT experiment, the protein intensities were
log2 transformed and subject to a median normalization.
Significantly different protein levels between control and
cancer groups for the three TMT experiments were cal-
culated using a two-sided Student’s t-test using a permu-
tation-based FDR cutoff (250 randomizations, FDR 0.01,
S0 1). Proteins were considered as differentially regulated
if their adjusted p-value corresponded to an FDR lower
or equal to 0.01 and their fold change (expressed as log2
ratio) was<—2 or > +2.

Gene ontology (GO) and functional analysis

The GO terms in the protein datasets were analyzed
using the Scaffold bioinformatics resource (version
4.10.0), which performs functional classification and ID
conversion of the proteins that we identified. The ‘bio-
logical process, ‘molecular function’ and ‘cellular com-
ponent’ classifications were analyzed using Uniprot
accession numbers.

Ingenuity pathway analysis

In order to further understand the biological significance
of differentially expressed proteins, Ingenuity Pathway
Analysis (IPA; Ingenuity® Systems, www.Ingenuity.com/)
was used to analyze canonical pathways and biomarker
filter. The proteomic data set included fold changes of
protein was submitted into Ingenuity Pathway Analysis
for core analysis, protein interactions regulated pathway
analysis.

The core analysis was carried out with the settings of
indirect and direct relationships between molecules
which is come from our experimental data and data
sources of the Ingenuity Knowledge Base. The prob-
ability that show the relationship of biological functions
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and diseases in the protein dataset is represented by the
Right-tailed Fisher’s exact test.

Synthetic peptides

For the MRM analysis, we first synthesized crude SIS
(stable isotope-labeled standard) peptides for target pep-
tides. Synthetic peptides were obtained from JPT Peptide
(JPT Technologies, Berlin, Germany). Peptide sequences
were synthesized as unmodified peptides with free N-
and C-terminal amino acids. If there was carbamoyl-
methylation on a cysteine, the peptide was synthesized
as the “carbamoylmethylation” form. For stable isotope-
labeled peptides (heavy peptide), the C-terminal arginine
or lysine contained *C- and '*N-labeled atoms.

Multiple reaction monitoring using triple quadrupole mass
spectrometry

For the MRM (multiple reaction monitoring) analysis,
digested peptides were analyzed by online nanoflow LC—
MS/MS on a NanoAcquity UPLC system (Waters) that
was connected to a 6500 QTRAP (AB Sciex, Framing-
ham, MA) through a nanoelectrospray ion source. Briefly,
digested peptides were loaded at a flow rate of 300nL/
min by an autosampler onto a precolumn (2 cm long;
ID, 180 pm; particle size, 5 um) and an analytical column
(10 cm long; ID, 150 um; particle size, 1.7 pum), which
were both packed with reversed-phase C18 material. The
peptides were separated on a linear ACN gradient from
5 to 35% for 70 min and from 35 to 70% for 20 min, and
peptides were eluted between 3 and 70 min. The optimal
parameters for the triple quadrupole mass spectrometer
that was interfaced with a nanospray source were as fol-
lows: ion spray (IS), 2300 V; source temperature, 160 °C;
high collision gas, approximately 4~3x107° torr; and
curtain gas, 20. MS parameters for declustering potential
(DP) and collision energy (CE) were determined using
the Skyline program. In the MRM run, the scan time for
each transition were set to 20 ms respectively.

The MRM assay was optimized with Skyline v20.2
(MacCoss Lab). Transitions which have high peak inten-
sity—all possible b- and y-ion series—were chosen for
each peptide at a 2/3 + charge state. The best 1 transition
was selected for further analysis, and CEs were optimized
for each transition. The energy was ramped around the
predicted value per the default formula (CE=0.057x—
4.262) in 5 steps on both sides with 2-V increments, and
the best CE energy was selected, based on the optimal
signal intensity, as manually assessed.
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Statistical analysis

To develop a reliable classifier from differentially
expressed proteins, we used SPSS (Armonk, NY: IBM
Corp., version 26) to perform t-test and chi-square tests
and generate receiver operating characteristic (ROC)
curves. Medicalc (MedCalc Software, Mariakerke, Bel-
gium) was also used for construction and evaluation of
multi-marker panel and survival analysis was also per-
formed using Kaplan—Meier method.

Results

Study layout for developing biomarker candidates

from primary cell to diagnose the Glioma

The first step in biomarker development is to identify
candidates. To this end, we performed a comprehensive
proteomics study of glial cells, which pooled glial pri-
mary cells (Control: 5 and Grade 4: 5) were used. Next
step is to validate the glial marker candidates in primary
glial cells and tissues (Control: 10 and 10, Grade 2: 10 and
10, Grade 3: 12 and 10, and Grade 4: 15 and 10) (Fig. 1
and Additional file 1: Table S1). Briefly, in the first stage,
we profiled the human glial proteome to obtain a pool of
biomarker candidates, in which TMT-labeled quantita-
tion method was performed to compare the abundance
of proteins between control and cancer. Then, we strati-
fied biomarker candidates by small scale MRM analysis,
which was used as the initial selection tool in our system-
atic proteomic pipeline. In the second stage, a large-scale
MRM analysis of targeted peptides was performed in
individual glial cells and tissues using the corresponding
heavy peptide mixtures as an internal standard. Finally, to
develop a multiplex assay, a multimarker panel was estab-
lished, based on candidate variables in individual primary
cells.

Identification of protein in glial primary cell

To obtain an in-depth proteome in glial primary cell, we
implemented the TMT labeling method combined with
LC-based mid pH peptide fractionation. Our proteome
analysis was performed based on the high-resolution
mass spectrometry and a multiple-database search strat-
egy including SEQUEST and X! Tandem. In this study, a
total of 7,429 protein groups were identified at a mini-
mum confidence level >95%, more than 2 unique pep-
tides, and FDR <5% (Additional file 1: Table S2).

To determine the functions of the proteins in our glial
proteome, we used Gene Ontology (GO) to classify them
by biological process (BP), molecular function (MF), and
cellular component (CC).

Our glial proteome was significantly enriched in pro-
teins that participate in ‘cellular process (38.6%), ‘bio-
logical regulation’ (29.4%), and ‘metabolic process’
(25.8%). Regarding molecular function, the proteome was
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significantly enriched in proteins that mediate ‘binding’
(34.4%), ‘catalytic activity’ (17.7%), and ‘enzyme regula-
tor activity’ (3.3%). GO analysis of cellular components
was significantly enriched in proteins associated with
‘intracellular organelle’ (37.2%), ‘cytoplasm’ (35.7%), and
‘membrane’ (21.8%) (Additional file 2: Fig. S2).

Differential expression of proteins in control and glioma
cell

For the differential proteome in control and cancer
cells, three technical replicates were performed, and the
labeled TMT quantitation method was used to compare
protein expression under different conditions.

To identify reliable key proteins that are systemically
able to show the differentially expressed pattern, we
first narrowed down the proteins based on the cutoff
range rule (t-test, p value<0.05, minimum confidence
level >95%, more than 2 unique peptides, and FDR<1%),
and selected 3,311 proteins. We then determined the
fold-change thresholds (expressed as log2 ratio) of>2
or<-2 to identify true differences in the expression of
proteins. Finally, to select a more reliable list of dif-
ferentially expressed proteins, we assessed the techni-
cal variability based on the coefficient of variation (CV)
in all experiments (CV <20%). Four hundred and sev-
enty-six proteins were finally quantifiable based on the
above quantitative criteria (Fig. 2 and Additional file 1:
Table S3), and these differentially expressed proteins
were represented by volcano plots and heat maps (Fig. 2).
Notably, three replicate experiments in control and gli-
oma samples were used to show experimental accuracy
and reproducibility.

Analysis of canonical pathway and protein networks

To investigate the signaling pathway and protein—pro-
tein interactions related to the upregulated and down-
regulated proteins in our glial proteome, we performed
canonical pathway and protein network analyses based
on the differentially expressed proteins using IPA. Com-
pared with control samples, there were 476 differentially
expressed proteins in grade 4 glioma, of which 228 pro-
teins increased, whereas 248 proteins decreased in abun-
dance. In the canonical pathway, 476 regulated proteins
were enriched in 470 pathways, where 21 representative
signaling pathways related the carcinogenesis and neu-
rogenesis are as followed; Protein Ubiquitination, Pro-
tein Kinase A Signaling, Sertoli Cell-Sertoli Cell Junction
Signaling, PI3K/AKT Signaling, Leukocyte Extravasa-
tion Signaling, Systemic Lupus Erythematosus Signaling,
IGF-1 Signaling, 14-3-3-mediated Signaling, HIPPO
signaling, ERK5 Signaling, Inhibition of ARE-Mediated
mRNA Degradation, Necroptosis Signaling, Calcium
Signaling, FAT10 Signaling, Mitochondrial Dysfunction,
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Fig. 1 Schematic describing the Glioma primary cell biomarker Study workflow. Sample preparation A: surgically-removed tissue samples were
enzymatically dissociated to single cells and cultured. Control pooled primary cells and grade 4 glioma pooled primary cells were lysed, digested,
and labeled with TMT reagent 126 and 130, respectively. TMT-labeled control and grade 4 glioma peptides were mixed and subjected to HPLC
fractionation. Candidate screening B: Fractionations obtained (n=12) were subjected to LC-MS/MS, and the acquired data were analyzed

via Proteome Discoverer to obtain differentially expressed proteins in glioma primary cells. Ingenuity pathway analysis (IPA) were performed

to further understand the biological significance of the differentially expressed proteins. Validation C: MRM assays for the differentially expressed

proteins were developed using synthetic peptides for each protein

Cell Cycle, Pentose Phosphate, DNA Methylation and
Transcriptional Repression Signaling, Apelin Adipocyte
Signaling, Neuroprotective Role of THOP1, and TCA
Cycle II pathway (Table 1).

Validation of biomarker candidates in the MRM analysis
To select biomarker candidates, we first excluded pro-
teins that have common gene and protein names. For

the selection of reliable MRM transition, we constructed
a glial-specific MS/MS spectral library and compared
its MS/MS spectra with experimental spectra from our
MRM analysis. In this study, 321 proteins showing the
same fragmentation spectral pattern were selected. We
then examined the detectability of marker candidates in
the MRM platform, and confirmed low, middle, and high
endogenous concentrations of the marker candidates,
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Fig. 2 Differentially expressed proteins. The cutoff range of protein identification is as follows: protein confidence interval > 95.0%, peptide

N > at least two peptides, 1% < decoy FDR. Through t-test, p<0.05, and cv < 20%, total 476 proteins were finally listed as differentially expressed
proteins. Volcano plot (A): For the analysis of differentially expressed proteins and statistical analysis, Perseus (version 1.5.8.2) and R were used,
where the cutoff range for significant fold change (FC) and T-test p-values were set as+2.0 and 0.05, respectively. Heat map (B): 2D-hierarchical
clustering analysis exploring the difference in protein expression between Red and Green Pashmina fiber. Each row in the map represents

a differentially expressed proteins, and each column represents the condition used. Log, (DEP) value was used for constructing the heat-map

wherein the ranges of low, middle, and high concentra-
tions were defined by comparing endogenous peptides
with heavy peptide concentrations. For the MRM vali-
dation analysis, we excluded proteins with no detected
range of concentration. To narrow down the number of
marker candidates, we performed a small-scale MRM
analysis, wherein we verified whether candidates showed
the same expression pattern between the MRM and
TMT-labeled dataset. From the small-scale MRM, 90
proteins were selected. Finally, bioinformatics analysis
of the differentially expressed proteins revealed several
putative enriched functional and disease networks, and
upstream regulators, such as cancer, cell death and sur-
vival, organismal injury, and abnormalities related net-
works, which were used to select biomarker candidates.
Consequently, 20 proteins, viz., ATP2B4, ATP5ME,
CCT3, DNMT1, FKBP2, GLRX5, IDH3A, JAM2, LDHA,
PCMT1, PLEKHG3, PRDX6, SLC44A2, TACC3, TIN-
AGL, TKT, TOMM34, UACA, UBA1, and YWHAE were
selected (Table 2).

Individual sample analysis by MRM
Using the heavy peptide mixture (20 fmol/pL) of each tar-
get peptide for MRM as an internal standard, we analyzed

individual human primary cells by MRM. We first con-
firmed the differential concentration of target proteins
between control (N: 10) and cancer (grade 2: 10, grade
3: 12, grade 4: 15). All 20 proteins were detected in glial
cells, and 5 proteins had disparate expression patterns in
the control and cancer groups (Fig. 3 and Table 2). Stu-
dent’s t-test and ROC curve was performed to compare
the control and cancer groups; 5 (CCT3, PCMT1, TKT,
TOMM34, UBA1) and 2 proteins (CCT3 and TOMM34)
were satisfied with the significant differences rule (Stu-
dent’s t-test: p<0.05, AUC: AUC value>0.7) in control
versus cancer (grade 4) and control versus cancer (grade
3and 4), respectively.

Construction of a multi-marker panel based on the MRM
results
To improve the classification discriminating power
between the control and cancer groups, we constructed a
multi-marker panel using Logistic regression analysis and
used it to statistical evaluation.

We first selected a multi-marker panel that showed the
best discriminatory power between the control and can-
cer group (grade 4). We then applied this multi-marker
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Table 1 Analysis of canonical pathway and protein networks

N Ingenuity -log Ratio z-score Down No change Up Nooverlap  Gene name
Canonical (p-value) regulated % % regulated with dataset
Pathways %

1 Protein 5.82 00784 - 4/268 (1) 0/268 (0) 17/268 (6) 247/268 (92)  DNAJB1,DNAJC2,HSPB6,HSPBSH
ubiquitination SPD1,HSPET,HSPHT,PSMC1,PSM
pathway C2,PSMC4,PSMD1,PSMD11,PSM

D12,PSMD3,PSME1,SUGT1,THOP
1,UBA1,UBE20,USP24,USP8

2 Protein kinase 2.71 0.0494 0.243 14/385 (4) 0/385 (0) 5/385 (1) 366/385 (95)  ADD3,CALM1,FLNAGNG12,GNG
A signaling 2,GYS1,H10,ITPR3,MAP2K1,PLCB3
,PPP1R10,PPP1R12APPP1R14AP

PP1R3D,PTPN12,PTPRJ,ROCK2,TG

FB2,YWHAE
3 Sertoli 523 0.0884 - 14/181 (8) 0/181 (0) 2/181 (1) 165/181 (91)  ACTB,ACTN1,AKT1T,AKT3,ILKITGB
cell-sertoli 1,JAM2,JAM3 KRAS,MAP2K1,MAP
cell junction 2K3,MPP6,RALA,RRAS, TJPT,VCL
signaling
4 PI3K/AKT 423 0.0809 —1.387 10/173(6) 0/173 (0) 4/173(2) 159/173(92)  AKT1,AKT3,GRB2,GYST,ILKINPP5
signaling KJITGB1,KRAS,LIMST,MAP2K1,RAL
A,RRAS,SYNJ2,YWHAE
5  Leukocyte 2.69 0.0622 0 9/193 (5) 0/193 (0) 3/193(2) 181/193 (94)  ACTB,ACTN1,ARHGAP35,CD44,C
extravasation D99,ITGB1,JAM2,JAM3,ROCK2,TH
signaling Y1,VCLWASL
6  Systemic 23 0.0556 0 8/216 (4) 0/216 (0) 4/216 (2) 204/216 (94)  AKT1,AKT3,CD44,DNMT1,GRB2K
lupus erythe- RAS,MAP2K1,MAP2K3,RALA,RND
matosus In T 3,ROCK2,RRAS
cell signaling
pathway
7 IGF-1signal- 449 0.106 —-0.707 7/104(7) 0/104 (0) 4/104 (4) 93/104 (89)  AKT1,AKT3,CCN1T,CCN2,GRB10,
ing GRB2,KRAS,MAP2K1,RALA,RRAS
YWHAE
8  14-3-3-medi- 254 00714 =1 6/126 (5) 0/126 (0) 3/126 (2) 117/126 (93)  AKT1,AKT3,GRB2 KRAS,MAP2K1,P
ated signaling LCB3,RALA,RRAS,YWHAE
9 HIPPOsignal- 245 0.0833 - 4/84 (5) 0/84 (0) 3/84 (4) 77/84(92) CD44,PPPT1R10,PPP1R12A,PPP1R
ing 14A,PPP1R3D, TP53BP2,YWHAE
10 ERK5Signal- 217 0.0833 0 3/72 (4) 0/72 (0) 3/72 (4) 66/72 (92) AKT1,KRAS,RALA,RPSEKA3,RRA
ing SYWHAE
11 Inhibition 0.801 0.041 —1342 3/122(2) 0/122 (0) 2/122 (2) 117/122 (96)  AKT1,AKT3,DDX6,PSMET,YWHAE
of ARE-medi-
ated mRNA
degradation
pathway
12 Necroptosis 0.541 0.0327 1.342 1/153 (1) 0/153(0) 4/153 (3) 148/153 (97)  PLA2GA4A,STAT1,TIMM13,TIMM8
signaling ATOMM34
pathway
13 Calcium 0.305 0.0253 -1 3/198 (2) 0/198 (0) 2/198 (1) 193/198 (97)  ATP2B4,CACNA2D1,CALM1
signaling (includes others),ITPR3,MYH14
14 FAT10signal-  3.16 0222 - 1/18 (6) 0/18 (0) 3/18(17) 14/18 (78) PSME1,SQSTM1,UBA1,UBA6
ing pathway
15 mitochondrial 0.267 0.0242 - 2/165 (1) 0/165 (0) 2/165 (1) 161/165 (98)  ATPSME,CPT1A,GSRNDUFABI1
dysfunction
16 pentose 1.66 0.2 - 1/10(10) 0/10(0) 1/10 (10) 8/10(80) PGD,TKT
phosphate
pathway
17 DNA methyla- 0.724 0.0588 - 1/34 (3) 0/34 (0) 1/34 (3) 32/34(94) DNMT1,H4-16
tion and tran-
scriptional
repression

signaling
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Table 1 (continued)

Page 9 of 17

Ratio Down

regulated % %

N Ingenuity -log
Canonical (p-value)
Pathways

Z-score

No change Up

Nooverlap  Gene name
with dataset

%

regulated

18 Apelinadipo- 0.256 0.0253 - 1/79 (1)
cyte signaling
pathway

19 Neuropro- 0 00183 - 0/109 (0)
tective role

of THOP1

in Alzheimer’s

disease

20 TCA Cyclell
(Eukaryotic)

21 Cell Cycle:
G2/M DNA
damage
checkpoint
regulation

0.363 0.0417 - 0/24 (0)

0.971 0.0612 - 0/49 (0)

0/79 (0)

0/109 (0)

0/24 (0)

0/49 (0)

1/79 (1) 77/79 (97) GNAT11,PRDX6

2/109 (2) 107/109 (98)  THOP1,YWHAE

1/24 (4) 23/24 (96) IDH3A

3/49 (6) 46/49 (94) TGFB2

panel to evaluate its discriminatory power in control
group versus cancer group (grade 3 and 4).

In a comparison of the control with cancer group
(grade 4), the 5-marker panel (CCT3, PCMT1, TKT,
TOMM34, UBA1) showed better sensitivity (0.90 and
0.90), specificity (0.93 and 1.00), error rate (8 and 4%),
and AUC value (0.94 and 0.96) than the best single
marker (TOMM34). Indeed, the single best candidate
model showed lower sensitivity (0.70 and 0.80), speci-
ficity (0.80 and 0.50), AUC value (0.88 and 0.72), and a
higher error rate (24 and 11%) (Figs. 4, 5 and Additional
file 2: Fig. S3). Moreover, for the control versus cancer
group (grade 3 and 4) comparison, the 5-marker panel
(sensitivity, 0.80 and 0.90; specificity, 0.92 and 1.00; error
rate, 10 and 2%; and AUC, 0.93 and 0.98) also showed
better performance than the best single marker (sensitiv-
ity, 0.50 and 0.40; specificity, 0.88 and 0.85; error rate, 26
and 7%; and AUC, 0.82 and 0.82) (Figs. 4, 5).

Discussion

To improve the classification discriminating power
between the control and cancer groups, we constructed
a multi-marker panel and subjected it to statistical evalu-
ation. A similar approach has been conducted to iden-
tify a novel biomarker that can distinguish disease status
between affected and healthy groups; a multi-marker
panel that included more than 1 protein showed bet-
ter performance than a single marker [29]. Before we
selected marker candidates for the multi-marker panel,
we first considered which combination of control and
cancer groups (grade 2, grade 3, and grade 4) would show
the best discriminating power. Grade 2 cancer is an early
stage of glioma and it was not easy to observe differences

in the control versus cancer group. However, grade 4 can-
cer is a more advanced stage of disease and may be more
representative of a glioma diagnosis than early stage of
one. Thus, the detection of grade 4 might be more suit-
able for glioma screening. Therefore, we first selected a
multi-marker panel that showed the best discriminatory
power between the control and cancer group (grade 4).
We then applied this multi-marker panel to evaluate its
discriminatory power in control versus cancer (grade 3
and 4). As shown the result section, the 5-marker panel
(sensitivity, 0.80 and 0.90; specificity, 0.92 and 1.00; error
rate, 10 and 2%; and AUC, 0.93 and 0.98) also showed
better performance than the best single marker (sensi-
tivity, 0.50 and 0.40; specificity, 0.88 and 0.85; error rate,
26 and 7%; and AUC, 0.82 and 0.82) (Figs. 4, 5 and Addi-
tional file 2: Fig. S3). These data demonstrate that the dis-
criminatory power of the 5-marker panel was higher than
the best single marker model in both of primary cells and
tissue (Figs. 4, 5 and Additional file 2: Figure S3).
Furthermore, in this study, we first wanted to know
that the discovered single and multi-marker are able to
show the classification discriminating power between
the control and cancer groups (grade 2) and if so, these
markers are also able to show whether or not multi-
marker panel represent the better performance than sin-
gle marker in the control and cancer groups (grade 2). In
a comparison of the control with cancer group (grade 2),
single best candidate model showed the effective clas-
sification discriminating power and the 5-marker panel
also showed better sensitivity (0.70 and 0.90), specificity
(0.80 and 0.90), error rate (25 and 3%), and AUC value
(0.87 and 0.97) than the best single marker (TOMM34)
(Fig. 5). Indeed, the single best candidate model showed
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Fig. 3 Validation of biomarker candidates in control group and cancer group. The 20 selected proteins from TMT labeled quantitation were verified
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Fig. 4 Comparison of discriminatory power of the 5-marker panel versus the best single marker in primary glial cells. Five proteins were selected
from t-test and ROC curve and used to construct the 5-marker panel, and its performance was evaluated. Logistic regression algorithms were used,
in which enter method was used to evaluate the discriminatory power between control and grade 2, 4, 3 and 4 groups (Control: 10, Grade 2: 10,
Grade 3: 12, and Grade 4: 15). The results of the evaluation between the best single marker A and C and 5-marker panel B and C are presented
as confusion matrices with sensitivity, specificity, and error rate, and ROC curves D, E, and F are also represented by AUC values
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Fig. 5 Comparison of discriminatory power of the 5-marker panel versus the best single marker in glial tissues. The performance of 5-marker panel
was also evaluated in glial tissue samples. Logistic regression algorithms were used, in which enter method was used to evaluate the discriminatory
power between control and grade 2, 4, 3 and 4 groups (Control: 10, Grade 2: 10, Grade 3: 10, and Grade 4: 10). The results of the evaluation
between the best single marker A and C and 5-marker panel B and C are presented as confusion matrices with sensitivity, specificity, and error rate,
and ROC curves D, E, and F are also represented by AUC values
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Fig. 6 The result of Kaplan-Meier Survival Analysis for DNMTT1, IDH3A, TACC3, and TKT For the discovery of prognostic markers, Kaplan-Meier
survival curves were generated and compared the protein expression and survival rate. Four proteins (A DNMT1, B IDH3A, CTACC3, and D TKT)
showed significant differences between the high and low expressions, where p-values of analysis are 0.0226, 0.0033, 0.0130, and 0.0092, respectively

lower sensitivity (0.70 and 0.80), specificity (0.70 and
0.60), AUC value (0.84 and 0.97), and a higher error rate
(30 and 70%) in both of primary cells and tissue (Figs. 4,
5). Consequently, discovered 5 multi-marker showed the
classification discriminating power between the control
and cancer groups (grade 2).

For the discovery of prognostic markers, we used the
individual patient’s clinical information, and analyzed the

statistical significance between the survival dataset and
expression of selected 20 proteins. To this end, Kaplan—
Meier survival curves were generated and compared
the protein expression and survival rate. We divided the
MRM data into two groups, i.e., high and low expres-
sions. In the result of the Kaplan—Meier survival plot,
four proteins (DNMT1, IDH3A, TACC3, and TKT)
showed significant differences between the high and low
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expressions, although they did not differ significantly in
the t-test. As shown by the Kaplan—Meier plot analysis
of the MRM data, we showed that higher expression of
these proteins was correlated with poorer prognosis of
glioma patients (Fig. 6). This demonstrated that DNMT1,
IDH3A, TACC3, and TKT could be incorporated as
prognostic markers for glioma. However, 4 prognostic
marker candidates seem to be required further validation
in a large sample size.

Conclusion

In this study, 7429 and 476 proteins were identified and
quantitated in the control and cancer samples, respec-
tively. Among them, 20 proteins were selected and vali-
dated using the quantitative MRM-MS assay, whereas
we verified the reproducibility of the overall process for
the MRM-MS assay. From the results of the quantita-
tive assay, we discovered five potential diagnostic and
four prognostic biomarkers for glioma. The results of this
study indicate that our MRM-MS assay has the advan-
tages of being highly validated, transferable, and able
to quantify high- to low-abundance proteins, and has
the potential for use as a preclinical validation method.
Although we acknowledge that the model requires fur-
ther validation in a large sample size, the five diagnostic
and four prognostic biomarkers can be used as baseline
data for the development of new therapeutic strategies
for glioma.
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